Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cold Spring Harb Protoc ; 2023(4): pdb.prot098269, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36180216

RESUMO

Phenotypic drug discovery assesses the effect of small molecules on the phenotype of cells, tissues, or whole organisms without a priori knowledge of the target or pathway. Using vertebrate embryos instead of cell-based assays has the advantage that the screening of small molecules occurs in the context of the complex biology and physiology of the whole organism. Fish and amphibians are the only classes of vertebrates with free-living larvae amenable to high-throughput drug screening in multiwell dishes. For both animal classes, particularly zebrafish and Xenopus, husbandry requirements are straightforward, embryos can be obtained in large numbers, and they develop ex utero so their development can be monitored easily with a dissecting microscope. At 350 million years, the evolutionary distance between amphibians and humans is significantly shorter than that between fish and humans, which is estimated at 450 million years. This increases the likelihood that drugs discovered by screening in amphibian embryos will be active in humans. Here, we describe the basic protocol for the medium- to high-throughput screening of chemical libraries using embryos of the African clawed frog Xenopus laevis Bioactive compounds are identified by observing phenotypic changes in whole embryos and tadpoles. In addition to the discovery of compounds with novel bioactivities, the phenotypic screening protocol also allows for the identification of compounds with in vivo toxicity, eliminating early hits that are poor drug candidates. We also highlight important considerations for designing chemical screens, choosing chemical libraries, and performing secondary screens using whole mount in situ hybridization or immunostaining.


Assuntos
Bibliotecas de Moléculas Pequenas , Peixe-Zebra , Animais , Humanos , Bibliotecas de Moléculas Pequenas/farmacologia , Xenopus laevis , Larva , Peixe-Zebra/genética , Descoberta de Drogas/métodos , Fenótipo
2.
J Steroid Biochem Mol Biol ; 210: 105874, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33722706

RESUMO

The African clawed frog, Xenopus laevis, is a versatile model for biomedical research and is largely similar to mammals in terms of organ development, anatomy, physiology, and hormonal signaling mechanisms. Steroid hormones control a variety of processes and their levels are regulated by hydroxysteroid dehydrogenases (HSDs). The subfamily of 20ß-HSD type 2 enzymes currently comprises eight members from teleost fish and mammals. Here, we report the identification of three 20ß-HSD type 2 genes in X. tropicalis and X. laevis and the functional characterization of the two homeologs from X. laevis. X. laevis Hsd20b2.L and Hsd20b2.S showed high sequence identity with known 20ß-HSD type 2 enzymes and mapped to the two subgenomes of the allotetraploid frog genome. Both homeologs are expressed during embryonic development and in adult tissues, with strongest signals in liver, kidney, intestine, and skin. After recombinant expression in human cell lines, both enzymes co-localized with the endoplasmic reticulum and catalyzed the conversion of cortisone to 20ß-dihydrocortisone. Both Hsd20b2.L and Hsd20b2.S catalyzed the 20ß-reduction of further C21 steroids (17α-hydroxyprogesterone, progesterone, 11-deoxycortisol, 11-deoxycorticosterone), while only Hsd20b2.S was able to convert corticosterone and cortisol to their 20ß-reduced metabolites. Estrone was only a poor and androstenedione no substrate for both enzymes. Our results demonstrate multispecificity of 20ß-HSD type 2 enzymes from X. laevis similar to other teleost 20ß-HSD type 2 enzymes. X. laevis 20ß-HSD type 2 enzymes are probably involved in steroid catabolism and in the generation of pheromones for intraspecies communication. A role in oocyte maturation is unlikely.


Assuntos
Cortisona Redutase/genética , Cortisona Redutase/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , 17-alfa-Hidroxiprogesterona/metabolismo , Animais , Cortisona/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Células HeLa , Humanos , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Xenopus laevis/embriologia
3.
Adv Drug Deliv Rev ; 69-70: 225-46, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24576445

RESUMO

Many rare human inherited diseases remain untreatable despite the fact that the disease causing genes are known and adequate mouse disease models have been developed. In vivo phenotypic drug screening relies on isolating drug candidates by their ability to produce a desired therapeutic phenotype in whole organisms. Embryos of zebrafish and Xenopus frogs are abundant, small and free-living. They can be easily arrayed in multi-well dishes and treated with small organic molecules. With the development of novel genome modification tools, such a zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas, it is now possible to efficiently engineer non-mammalian models of inherited human diseases. Here, we will review the rapid progress made in adapting these novel genome editing tools to Xenopus. The advantages of Xenopus embryos as in vivo models to study human inherited diseases will be presented and their utility for drug discovery screening will be discussed. Being a tetrapod, Xenopus complements zebrafish as an indispensable non-mammalian animal model for the study of human disease pathologies and the discovery of novel therapeutics for inherited diseases.


Assuntos
Descoberta de Drogas/métodos , Engenharia Genética/métodos , Fenótipo , Xenopus/embriologia , Animais , Descoberta de Drogas/tendências , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/tendências , Engenharia Genética/tendências , Humanos , Estágios do Ciclo de Vida/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA