Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397078

RESUMO

Hanseniaspora uvarum is the predominant yeast species in the majority of wine fermentations, which has only recently become amenable to directed genetic manipulation. The genetics and metabolism of H. uvarum have been poorly studied as compared to other yeasts of biotechnological importance. This work describes the construction and characterization of homozygous deletion mutants in the HuZWF1 gene, encoding glucose-6-phosphate dehydrogenase (G6PDH), which provides the entrance into the oxidative part of the pentose phosphate pathway (PPP) and serves as a major source of NADPH for anabolic reactions and oxidative stress response. Huzwf1 deletion mutants grow more slowly on glucose medium than wild-type and are hypersensitive both to hydrogen peroxide and potassium bisulfite, indicating that G6PDH activity is required to cope with these stresses. The mutant also requires methionine for growth. Enzyme activity can be restored by the expression of heterologous G6PDH genes from other yeasts and humans under the control of a strong endogenous promoter. These findings provide the basis for a better adaptation of H. uvarum to conditions used in wine fermentations, as well as its use for other biotechnological purposes and as an expression organism for studying G6PDH functions in patients with hemolytic anemia.


Assuntos
Hanseniaspora , Vinho , Humanos , Fermentação , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Hanseniaspora/enzimologia , Homozigoto , Deleção de Sequência
2.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768181

RESUMO

Hanseniaspora uvarum is an ascomycetous yeast that frequently dominates the population in the first two days of wine fermentations. It contributes to the production of many beneficial as well as detrimental aroma compounds. While the genome sequence of the diploid type strain DSM 2768 has been largely elucidated, transformation by electroporation was only recently achieved. We here provide an elaborate toolset for the genetic manipulation of this yeast. A chromosomal replication origin was isolated and used for the construction of episomal, self-replicating cloning vectors. Moreover, homozygous auxotrophic deletion markers (Huura3, Huhis3, Huleu2, Huade2) have been obtained in the diploid genome as future recipients and a proof of principle for the application of PCR-based one-step gene deletion strategies. Besides a hygromycin resistance cassette, a kanamycin resistance gene was established as a dominant marker for selection on G418. Recyclable deletion cassettes flanked by loxP-sites and the corresponding Cre-recombinase expression vectors were tailored. Moreover, we report on a chemical transformation procedure with the use of freeze-competent cells. Together, these techniques and constructs pave the way for efficient and targeted manipulations of H. uvarum.


Assuntos
Hanseniaspora , Vinho , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Hanseniaspora/genética , Reação em Cadeia da Polimerase
3.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054955

RESUMO

The milk yeast Kluyveromyces lactis degrades glucose through glycolysis and the pentose phosphate pathway and follows a mainly respiratory metabolism. Here, we investigated the role of two reactions which are required for the final steps of glucose degradation from both pathways, as well as for gluconeogenesis, namely fructose-1,6-bisphosphate aldolase (FBA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In silico analyses identified one gene encoding the former (KlFBA1), and three genes encoding isoforms of the latter (KlTDH1, KlTDH2, KlGDP1). Phenotypic analyses were performed by deleting the genes from the haploid K. lactis genome. While Klfba1 deletions lacked detectable FBA activity, they still grew poorly on glucose. To investigate the in vivo importance of the GAPDH isoforms, different mutant combinations were analyzed for their growth behavior and enzymatic activity. KlTdh2 represented the major glycolytic GAPDH isoform, as its lack caused a slower growth on glucose. Cells lacking both KlTdh1 and KlTdh2 failed to grow on glucose but were still able to use ethanol as sole carbon sources, indicating that KlGdp1 is sufficient to promote gluconeogenesis. Life-cell fluorescence microscopy revealed that KlTdh2 accumulated in the nucleus upon exposure to oxidative stress, suggesting a moonlighting function of this isoform in the regulation of gene expression. Heterologous complementation of the Klfba1 deletion by the human ALDOA gene renders K. lactis a promising host for heterologous expression of human disease alleles and/or a screening system for specific drugs.


Assuntos
Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Kluyveromyces/enzimologia , Kluyveromyces/genética , Metabolismo Energético , Ativação Enzimática , Deleção de Genes , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética , Glicólise , Humanos , Redes e Vias Metabólicas , Estresse Oxidativo , Via de Pentose Fosfato , Fenótipo
4.
Society ; 58(2): 120-130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054165

RESUMO

Billionaire philanthropists claim to play a key role in advancing well-being and public goods across the world. One of the most prominent recent expressions of these efforts is the Giving Pledge, created in 2010 by Bill and Melinda Gates in collaboration with Warren Buffett. After a decade of its existence, this analysis of the Giving Pledge population and its commitment letters shows an overall dominance of white, male, and US-based billionaires among the signatories. Tech billionaires are a wealthier and younger subgroup of pledgers than their counterparts in other industries. The pledge letters reveal an emphasis on education and health as dominant philanthropic causes. Among explanations for giving, the four most frequent reasons mentioned are a desire to make a difference, a wish to give back, a sense of personal fulfillment resulting from giving, and references to being socialized into philanthropic giving early in life. While the Giving Pledge is the most prominent global effort to increase philanthropic giving among the wealthy, the voluntary nature and relatively modest commitment goal make it difficult to assess its significance and impact.

5.
Int Microbiol ; 23(1): 43-53, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31020478

RESUMO

A wealth of data is accumulating on the physiological functions of human Rac1, a member of the Rho GTPase family of molecular switches and substrate of botulinum toxin, which was first identified as a regulator of cell motility through its effect on the actin cytoskeleton. Later on, it was found to be involved in different diseases like cancers, cardiac function, neuronal disorders, and apoptotic cell death. Despite the presence of Rac1 homologues in most fungi investigated so far, including Rho5 in the genetically tractable model yeast Saccharomyces cerevisiae, knowledge on their physiological functions is still scarce, let alone the details of the molecular mechanisms of their actions and interactions. Nevertheless, all functions proposed for human Rac1 seem to be conserved in one or the other fungus. This includes the regulation of MAPK cascades, polarized growth, and actin dynamics. Moreover, both the production and response to reactive oxygen species, as well as the reaction to nutrient availability, can be affected. We here summarize the studies performed on fungal Rac1 homologues, with a special focus on S. cerevisiae Rho5, which may be of use in drug development in medicine and agriculture.


Assuntos
Proteínas Fúngicas/metabolismo , Fungos/citologia , Fungos/fisiologia , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Apoptose , Autofagia , Parede Celular/metabolismo , Senescência Celular , Citoesqueleto/metabolismo , Metabolismo Energético , Humanos , Concentração Osmolar , Estresse Oxidativo , Ligação Proteica , Isoformas de Proteínas , Proteínas rho de Ligação ao GTP/metabolismo
6.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703278

RESUMO

The small GTPase Rho5 of Saccharomyces cerevisiae is required for proper regulation of different signaling pathways, which includes the response to cell wall, osmotic, nutrient, and oxidative stress. We here show that proper in vivo function and intracellular distribution of Rho5 depends on its hypervariable region at the carboxyterminal end, which includes the CAAX box for lipid modification, a preceding polybasic region (PBR) carrying a serine residue, and a 98 amino acid-specific insertion only present in Rho5 of S. cerevisiae but not in its human homolog Rac1. Results from trapping GFP-Rho5 variants to the mitochondrial surface suggest that the GTPase needs to be activated at the plasma membrane prior to its translocation to mitochondria in order to fulfil its role in oxidative stress response. These findings are supported by heterologous expression of a codon-optimized human RAC1 gene, which can only complement a yeast rho5 deletion in a chimeric fusion with RHO5 sequences that restore the correct spatiotemporal distribution of the encoded protein.


Assuntos
Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Teste de Complementação Genética , Humanos , Domínios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética
7.
Fungal Genet Biol ; 117: 11-20, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29763674

RESUMO

Chitin is mainly formed by the chitin synthase III complex (CSIII) in yeast cells. This complex is considered to be composed of the catalytic subunit Chs3 and the regulatory subunit Chs4, both of which are phosphoproteins and transported to the plasma membrane by different trafficking routes. During cytokinesis, Chs3 associates with Chs4 and other proteins at the septin ring, which results in an active CSIII complex. In this study, we focused on the role of Chs4 as a regulatory subunit of the CSIII complex. We analyzed the dynamic localization and interaction of Chs3 and Chs4 during cell division, and found that both proteins transiently co-localize and physically interact only during bud formation and later in a period during septum formation and cytokinesis. To identify unknown binding partners of Chs4, we conducted different screening approaches, which yielded several novel candidates of Chs4-binding proteins including the septin-associated kinase Gin4. Our further studies confirmed this interaction and provided first evidence that Chs4 phosphorylation is partially dependent on Gin4, which is required for proper localization of Chs4 at the bud neck.


Assuntos
Quitina Sintase/genética , Quinases Ciclina-Dependentes/genética , Proteínas de Saccharomyces cerevisiae/genética , Divisão Celular/genética , Citocinese/genética , Fosforilação , Saccharomyces cerevisiae/genética , Septinas/genética
8.
Fungal Genet Biol ; 111: 16-29, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29175366

RESUMO

The NAD+-dependent glycerol 3-phosphate dehydrogenase (KlGpd1) is an important enzyme for maintenance of the cytosolic redox balance in the milk yeast Kluyveromyces lactis. The enzyme is localized in peroxisomes and in the cytosol, indicating its requirement for the oxidation of NADH in both compartments. Klgpd1 mutants grow more slowly on glucose than wild-type cells and do not grow on ethanol as a sole carbon source. We studied the molecular basis of the latter phenotype and found that Gpd1 is required for high expression of KlICL1 and KlMLS1 which encode the key enzymes of the glyoxylate pathway isocitrate lyase and malate synthase, respectively. This regulation is mediated by CSRE elements in the promoters of these genes and the Snf1-regulated transcription factors KlCat8 and KlSip4. To study the transactivation function of these factors we developed a modified yeast one-hybrid system for K. lactis, using the endogenous ß-galactosidase gene LAC4 as a reporter in a lac9 deletion background. In combination with ChIP analyses we discovered that Gpd1 controls both the specific binding of Cat8 and Sip4 to the target promoters and the capacity of these factors to activate the reporter gene expression. We propose a model in which KlGpd1 activity is required for maintenance of the redox balance. In its absence, genes which function in generating redox balance instabilities are not expressed. A comparison of mutant phenotypes further indicates, that this system not only operates in K. lactis, but also in Saccharomyces cerevisiae.


Assuntos
Etanol/metabolismo , Proteínas Fúngicas/metabolismo , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Kluyveromyces/enzimologia , Fatores de Transcrição/antagonistas & inibidores , Regulação Fúngica da Expressão Gênica , Glioxilatos/metabolismo , Isocitrato Liase/metabolismo , Kluyveromyces/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/fisiologia
9.
Int J Mol Sci ; 19(8)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30049968

RESUMO

Rho5 is a small GTPase of Saccharomyces cerevisiae and a homolog of mammalian Rac1. The latter regulates glucose metabolism and actin cytoskeleton dynamics, and its misregulation causes cancer and a variety of other diseases. In yeast, Rho5 has been implicated in different signal transduction pathways, governing cell wall integrity and the responses to high medium osmolarity and oxidative stress. It has also been proposed to affect mitophagy and apoptosis. Here, we demonstrate that Rho5 rapidly relocates from the plasma membrane to mitochondria upon glucose starvation, mediated by its dimeric GDP/GTP exchange factor (GEF) Dck1/Lmo1. A function in response to glucose availability is also suggested by synthetic genetic phenotypes of a rho5 deletion with gpr1, gpa2, and sch9 null mutants. On the other hand, the role of mammalian Rac1 in regulating the action cytoskeleton does not seem to be strongly conserved in S. cerevisiae Rho5. We propose that Rho5 serves as a central hub in integrating various stress conditions, including a crosstalk with the cAMP/PKA (cyclic AMP activating protein kinase A) and Sch9 branches of glucose signaling pathways.


Assuntos
Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intracelular/análise , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico , Proteínas rho de Ligação ao GTP/análise , Proteínas rho de Ligação ao GTP/genética
10.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28887422

RESUMO

Hanseniaspora uvarum (anamorph Kloeckera apiculata) is a predominant yeast on wine grapes and other fruits and has a strong influence on wine quality, even when Saccharomyces cerevisiae starter cultures are employed. In this work, we sequenced and annotated approximately 93% of the H. uvarum genome. Southern and synteny analyses were employed to construct a map of the seven chromosomes present in a type strain. Comparative determinations of specific enzyme activities within the fermentative pathway in H. uvarum and S. cerevisiae indicated that the reduced capacity of the former yeast for ethanol production is caused primarily by an ∼10-fold-lower activity of the key glycolytic enzyme pyruvate kinase. The heterologous expression of the encoding gene, H. uvarumPYK1 (HuPYK1), and two genes encoding the phosphofructokinase subunits, HuPFK1 and HuPFK2, in the respective deletion mutants of S. cerevisiae confirmed their functional homology.IMPORTANCEHanseniaspora uvarum is a predominant yeast species on grapes and other fruits. It contributes significantly to the production of desired as well as unfavorable aroma compounds and thus determines the quality of the final product, especially wine. Despite this obvious importance, knowledge on its genetics is scarce. As a basis for targeted metabolic modifications, here we provide the results of a genomic sequencing approach, including the annotation of 3,010 protein-encoding genes, e.g., those encoding the entire sugar fermentation pathway, key components of stress response signaling pathways, and enzymes catalyzing the production of aroma compounds. Comparative analyses suggest that the low fermentative capacity of H. uvarum compared to that of Saccharomyces cerevisiae can be attributed to low pyruvate kinase activity. The data reported here are expected to aid in establishing H. uvarum as a non-Saccharomyces yeast in starter cultures for wine and cider fermentations.


Assuntos
Etanol/metabolismo , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Hanseniaspora/genética , Hanseniaspora/metabolismo , Piruvato Quinase/metabolismo , Vitis/microbiologia , Fermentação , Proteínas Fúngicas/genética , Glicólise , Hanseniaspora/enzimologia , Piruvato Quinase/genética
11.
Mol Microbiol ; 96(2): 306-24, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25598154

RESUMO

The exact function and regulation of the small GTPase Rho5, a putative homolog of mammalian Rac1, in the yeast Saccharomyces cerevisiae have not yet been elucidated. In a genetic screen initially designed to identify novel regulators of cell wall integrity signaling, we identified the homologs of mammalian DOCK1 (Dck1) and ELMO (Lmo1) as upstream components which regulate Rho5. Deletion mutants in any of the encoding genes (DCK1, LMO1, RHO5) showed hyper-resistance to cell wall stress agents, demonstrating a function in cell wall integrity signaling. Live-cell fluorescence microscopy showed that Dck1, Lmo1 and Rho5 quickly relocate to mitochondria under oxidative stress and cell viability assays indicate a role of Dck1/Lmo1/Rho5 signaling in triggering cell death as a response to hydrogen peroxide treatment. A regulatory role in autophagy/mitophagy is suggested by the colocalization of Rho5 with autophagic markers and the decreased mitochondrial turnover observed in dck1, lmo1 and rho5 deletion mutants. Rho5 activation may thus serve as a central hub for the integration of different signaling pathways.


Assuntos
Regulação Enzimológica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Estresse Oxidativo , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/genética
12.
Biochim Biophys Acta ; 1843(11): 2685-97, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25110348

RESUMO

Cytokinesis in yeast and mammalian cells is a highly coordinated process mediated by the constriction of an actomyosin ring. In yeasts, it is accompanied by the formation of a chitinous primary septum. Although much is known about the regulation of cytokinesis in budding yeast, overlapping functions of redundant genes complicates genetic analyses. Here, we investigated the effects of various deletion mutants on cytokinesis in the milk yeast Kluyveromyces lactis. To determine the spatiotemporal parameters of cytokinesis components, live-cell imaging of fluorophor-tagged KlMyo1 and a new Lifeact probe for KlAct1 was employed. In contrast to Saccharomyces cerevisiae, where deletion of ScMYO1 is lethal, Klmyo1 deletion was temperature-sensitive. Transmission and scanning electron microscopy demonstrated that the Klmyo1 deletion cells had a defect in the formation of the primary septum and in cell separation; this result was confirmed by FACS analyses. Deletion of KlCYK3 was lethal, whereas in S. cerevisiae a cyk3 deletion is synthetically lethal with hof1 deletion. Growth of Klhof1 mutants was osmoremedial at 25°C, as it is in S. cerevisiae. CYK3 and HOF1 genes cross-complemented in both species, suggesting that they are functional homologs. Inn1, a common interactor for these two regulators, was essential in both yeasts and the encoding genes did not cross-complement. The C2 domain of the Inn1 homologs conferred species specificity. Thus, our work establishes K. lactis as a model yeast to study cytokinesis with less genetic redundancy than S. cerevisiae. The viability of Klmyo1 deletions provides an advantage over budding yeast to study actomyosin-independent cytokinesis. Moreover, the lethality of Klcyk3 null mutants suggests that there are fewer functional redundancies with KlHof1 in K. lactis.

13.
Biochem J ; 462(1): 185-97, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24805887

RESUMO

Primary active proton transport by eukaryotic V-ATPases (vacuolar ATPases) is regulated via the reversible disassembly of the V1Vo holoenzyme into its peripheral catalytic V1 complex and its membrane-bound proton-translocating Vo complex. This nutrient-dependent phenomenon had been first detected in the midgut epithelium of non-feeding moulting tobacco hornworms (Manduca sexta) and in glucose-deprived yeast cells (Saccharomyces cerevisiae). Since reversible disassembly to date had been investigated mostly in vitro, we wanted to test this phenomenon under in vivo conditions. We used living yeast cells with V-ATPase subunits fused to green, yellow or cyan fluorescent protein and found that only the V1 subunit C (Vma5) was released into the cytosol after substitution of extracellular glucose with galactose, whereas the other V1 subunits remained at or near the membrane. FRET analysis demonstrated close proximity between V1 and Vo even under glucose-starvation conditions. Disassembly, but not reassembly, depended on functional microtubules. Results from overlay blots, pull-down assays and bimolecular fluorescence complementation support the assumption that subunit C interacts directly with microtubules without involvement of linker proteins.


Assuntos
Subunidades Proteicas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Citosol/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/enzimologia
14.
Eur J Cell Biol ; 103(2): 151405, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503132

RESUMO

Yeast Rho5 is a small GTPase which mediates the response to nutrient and oxidative stress, and triggers mitophagy and apoptosis. We here studied the rapid translocation of a GFP-tagged Rho5 to mitochondria under such stress conditions by live-cell fluorescence microscopy in the background of strains lacking different mitochondrial outer membrane proteins (MOMP). Fun14, Msp1 and Alo1 were found to be required for efficient recruitment of the GTPase, whereas translocation of Dck1 and Lmo1, the subunits of its dimeric GDP/GTP exchange factor (GEF), remained unaffected. An influence of the voltage-dependent anion channel (VDAC) Por1 on the association of GFP-Rho5 with mitochondria under oxidative stress conditions appeared to be strain-dependent. However, epistasis analyses and bimolecular fluorescence complementation (BiFC) studies indicate a genetic and physical interaction. All four strains lacking a single MOMP were investigated for their effect on mitophagy.


Assuntos
Membranas Mitocondriais , Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas rho de Ligação ao GTP , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Membranas Mitocondriais/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Transporte Proteico , Canais de Ânion Dependentes de Voltagem/metabolismo , Canais de Ânion Dependentes de Voltagem/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mitofagia , Porinas
15.
Mol Microbiol ; 85(3): 574-93, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22676838

RESUMO

Fungi produce spores that allow for their dispersal and survival under harsh environmental conditions. These spores can have an astonishing variety of shapes and sizes. Using the highly polar, needle-shaped spores of the ascomycete Ashbya gossypii as a model, we demonstrated that spores produced by this organism are not simple continuous structures but rather consist of three different segments that correlate with the accumulation of different materials: a rigid tip segment, a more fragile main spore-compartment and a solid tail segment. Little is currently known about the regulatory mechanisms that control the formation of the characteristic spore morphologies. We tested a variety of mutant strains for their spore phenotypes, including spore size, shape and wall defects. The mutants that we identified as displaying such phenotypes are all known for their roles in the regulation of hyphal tip growth, including the formin protein AgBni1, the homologous Rho-type GTPases AgRho1a and AgRho1b and the scaffold protein AgPxl1. Our observations suggest that these proteins form a signalling network controlling spore length by regulating the formation of actin structures.


Assuntos
Parede Celular/metabolismo , Eremothecium/metabolismo , Proteínas dos Microfilamentos/metabolismo , Paxilina/metabolismo , Esporos Fúngicos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Quitina/metabolismo , Eremothecium/citologia , Eremothecium/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Expressão Gênica , Proteínas dos Microfilamentos/genética , Mutação , Paxilina/genética , Ligação Proteica , Septinas/metabolismo , Esporos Fúngicos/citologia , Esporos Fúngicos/genética , Proteínas rho de Ligação ao GTP/genética
16.
Mol Microbiol ; 80(5): 1276-95, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21615551

RESUMO

Formin proteins are nucleators of actin filaments and regulators of the microtubule cytoskeleton. As such, they play important roles in the development of yeast and other fungi. We show here that AgBnr2, a homologue of the ScBnr1 formin from the filamentous fungus Ashbya gossypii, localizes to the spindle pole body (SPB), the fungal analogue of the centrosome of metazoans. This protein plays an important role in the development of the typical needle-shaped spores of A. gossypii, as suggested by several findings. First, downregulation of AgBNR2 causes defects in sporangium formation and a decrease in the total spore number. Second, a fusion of AgBNR2 to GFP that is driven by the native AgBNR2 promoter is only visible in sporangia. Third, AgBnr2 interacts with a AgSpo21, a sporulation-specific component of the SPB. Furthermore, we provide evidence that AgBnr2 might nucleate actin cables, which are connected to SPBs during sporulation. Our findings add to our understanding of fungal sporulation, particularly the formation of spores with a complex, elongated morphology, and provide novel insights into formin function.


Assuntos
Actinas/metabolismo , Eremothecium/metabolismo , Proteínas Fúngicas/metabolismo , Fuso Acromático/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Actinas/genética , Eremothecium/genética , Eremothecium/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Fuso Acromático/genética , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo
17.
Meat Sci ; 194: 108983, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36137354

RESUMO

In this work, the effect of processing conditions created with common meat technology equipment, on the spatial distribution of a green fluorescent protein producing -Escherichia coli in sausage meat was evaluated using confocal fluorescence microscopy and expressed with the help of the dispersion index. The results indicated that the reduction in mean particle size by prolonged comminution improved the distribution of cells in the sausage meat. Furthermore, higher fat content seemed to favor a random distribution, although not significantly. Independent of the any variation of the sausage meat production parameters, Listeria monocytogenes was effectively controlled in fermented sausages, although a theoretically less homogenous distribution of the starter culture in the sausage meat, tended to improve the effect, however, insignificantly. An early onset of the quorum-sensing-driven bacteriocin production in poorly distributed larger colonies may have been the reason for this. No differences in the composition of the microbiome between sausages with poor and good distribution of the starter culture were observed.


Assuntos
Microbiologia de Alimentos , Produtos da Carne , Fermentação , Produtos da Carne/microbiologia , Carne , Escherichia coli
18.
Yeast ; 28(7): 535-45, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21590809

RESUMO

The investigation of protein-protein interactions is an essential part of biological research. To obtain a deeper insight into regulatory protein networks, the identification of the components, domains and especially single residues that are involved in these interactions is helpful. A widespread and attractive genetic tool for investigation of protein-protein interactions is the yeast two-hybrid system. This method enables large-scale screens and its application is cheap and relatively simple. For identification of the amino acids in a protein sequence that are essential for interaction with a specific partner, yeast two-hybrid assays can be combined with random mutagenesis of the sequence of interest. A common problem with such an experiment is the generation of stop codons within the mutagenized fragments, leading to the isolation of many false positives when screening for loss of interaction using the two-hybrid method. To overcome this problem, we modified the yeast two-hybrid system to allow selection for sequences without stop codons. To achieve this, we fused the ScURA3 marker-gene in frame to the mutagenized fragments. We show here that this marker is fully functional when fused to a two-hybrid construct with a nuclear localization signal, such as a Gal4 activation domain and a prey protein, thus allowing selection of stop-free sequences on media without uracil. Using the Rho-binding domain from a Bni1-like formin and different Rho-type GTPases from Ashbya gossypii as examples, we further show that our system can be used to screen large numbers of transformants for loss of protein-protein interactions in combination with random mutagenesis.


Assuntos
Códon de Terminação , Mutagênese , Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido , Sequência de Aminoácidos , Sequência de Bases , Dados de Sequência Molecular , Ligação Proteica , Proteínas/genética , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido/instrumentação
19.
Mol Genet Genomics ; 284(3): 217-29, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20652590

RESUMO

The response to cell surface stress in yeast is mediated by a set of five plasma membrane sensors. We here address the relation of intracellular localization of the sensors Wsc1, Wsc2, and Mid2 to their turnover and signaling function. Growth competition experiments indicate that Wsc2 plays an important role in addition to Wsc1 and Mid2. The two Wsc sensors appear at the bud neck during cytokinesis and employ different routes of endocytosis, which govern their turnover. Whereas Wsc1 uses a clathrin-dependent NPFDD signal, Wsc2 relies on a specific lysine residue (K495). In end3 and doa4 endocytosis mutants, both sensors accumulate at the plasma membrane, and a hypersensitivity to cell wall-specific drugs and to treatment with zymolyase is observed. A haploid strain in which endocytosis of the two sensors is specifically blocked displays a reduced fitness in growth competition experiments. If the Mid2 sensor is mobilized by the addition of an endocytosis signal, it mimics the dynamic distribution of the Wsc sensors, but is unable to complement the specific growth defects of a wsc1 deletion. These data suggest that sensor distribution is not the major determinant for its specificity.


Assuntos
Endocitose/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Western Blotting , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Divisão Celular/fisiologia , Parede Celular/metabolismo , Relação Dose-Resposta a Droga , Endocitose/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hidrolases/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
20.
Mol Genet Genomics ; 282(4): 437-51, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19707790

RESUMO

Cytokinesis in yeast can be achieved by plasma membrane ingression, which is dependent on actomyosin ring constriction. Inn1 presumably couples these processes by interaction with both the plasma membrane and the temporary actomyosin ring component Hof1. In addition, an actomyosin ring independent cytokinesis pathway exists in yeast. We here identified Cyk3, a key component of the alternative pathway, as a novel interaction partner of Inn1. The carboxy-terminal proline rich part of Inn1 binds the SH3 domains of either Cyk3 or Hof1. Strains with truncated proteins lacking either of these SH3 domains do not display any severe phenotypes, but are synthetically lethal, demonstrating their crucial role in cytokinesis. Overexpression of CYK3 leads to an actomyosin ring independent recruitment of Inn1 to the bud neck, further supporting the significance of this interaction in vivo. Moreover, overexpression of CYK3 in a myo1 or an iqg1 deletion not only restores viability, but also the recruitment of Inn1 to the bud neck. We propose that Cyk3 is part of an actomyosin ring independent cytokinesis pathway, which acts as a rescue mechanism to recruit Inn1 to the bud neck.


Assuntos
Actomiosina/fisiologia , Proteínas de Ciclo Celular/metabolismo , Citocinese/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Actomiosina/metabolismo , Sequência de Aminoácidos , Citocinese/genética , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Organismos Geneticamente Modificados , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA