Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732083

RESUMO

Three new phenanthridine peptide derivatives (19, 22, and 23) were synthesized to explore their potential as spectrophotometric probes for DNA and RNA. UV/Vis and circular dichroism (CD) spectra, mass spectroscopy, and computational analysis confirmed the presence of intramolecular interactions in all three compounds. Computational analysis revealed that compounds alternate between bent and open conformations, highlighting the latter's crucial influence on successful polynucleotide recognition. Substituting one glycine with lysine in two regioisomers (22, 23) resulted in stronger binding interactions with DNA and RNA than for a compound containing two glycines (19), thus emphasizing the importance of lysine. The regioisomer with lysine closer to the phenanthridine ring (23) exhibited a dual and selective fluorimetric response with non-alternating AT and ATT polynucleotides and induction of triplex formation from the AT duplex. The best binding constant (K) with a value of 2.5 × 107 M-1 was obtained for the interaction with AT and ATT polynucleotides. Furthermore, apart from distinguishing between different types of ds-DNA and ds-RNA, the same compound could recognize GC-rich DNA through distinct induced CD signals.


Assuntos
Dicroísmo Circular , DNA , Lisina , Peptídeos , Fenantridinas , Fenantridinas/química , Lisina/química , Peptídeos/química , DNA/química , DNA/metabolismo , RNA/química , Conformação de Ácido Nucleico
2.
Chembiochem ; 24(15): e202300296, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071493

RESUMO

A transfection vector based on a peptide dendrimer (1) has been developed and its abilities for DNA binding and transport have been investigated. By attaching a fluorophore to the vector system (1*), several steps in the transfection process could be monitored directly. As DLS and AFM studies showed, the labeled vector 1* condensed DNA into tightly packed aggregates able to enter eukaryotic cells. Co-localization experiments revealed that the ligand/plasmid complex is taken up by the endosomal pathway followed by an endosomal escape or lysosomal degradation. Afterwards, the plasmid DNA seems to enter the nucleus due to a breakdown of the nuclear envelope during mitosis, as only cells that have recently undergone mitosis showed H2B-GFP expression.


Assuntos
Dendrímeros , Lisina/genética , Transfecção , Plasmídeos/genética , DNA/genética , Ânions
3.
Chembiochem ; 24(1): e202200519, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36314419

RESUMO

We rationally designed a series of amphiphilic hepta-peptides enriched with a chemically conjugated guanidiniocarbonylpyrrole (GCP) unit at the lysine side chain. All peptides are composed of polar (GCP) and non-polar (cyclohexyl alanine) residues but differ in their sequence periodicity, resulting in different secondary as well as supramolecular structures. CD spectra revealed the assembly of ß-sheet-, α-helical and random structures for peptides 1, 2 and 3, respectively. Consequently, this enabled the formation of distinct supramolecular assemblies such as fibres, nanorod-like or spherical aggregates. Notably, all three cationic peptides are equipped with the anion-binding GCP unit and thus possess a nucleic acid-binding centre. However, only the helical (2) and the unstructured (3) peptide were able to assemble into small virus-like DNA-polyplexes and effectively deliver DNA into cells. Notably, as both peptides (2 and 3) were also capable of siRNA-delivery, they could be utilized to downregulate expression of the caner-relevant protein Survivin.


Assuntos
Nanopartículas , Ácidos Nucleicos , Estrutura Secundária de Proteína , Peptídeos/química , DNA
4.
Chembiochem ; 23(5): e202100618, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35043526

RESUMO

Targeting specific protein binding sites to interfere with protein-protein interactions (PPIs) is crucial for the rational modulation of biologically relevant processes. Survivin, which is highly overexpressed in most cancer cells and considered to be a key player of carcinogenesis, features two functionally relevant binding sites. Here, we demonstrate selective disruption of the Survivin/Histone H3 or the Survivin/Crm1 interaction using a supramolecular approach. By rational design we identified two structurally related ligands (LNES and LHIS ), capable of selectively inhibiting these PPIs, leading to a reduction in cancer cell proliferation.


Assuntos
Proteínas Inibidoras de Apoptose , Sítios de Ligação , Proliferação de Células , Proteínas Inibidoras de Apoptose/metabolismo , Ligação Proteica , Survivina/química , Survivina/metabolismo
5.
Chemistry ; 28(43): e202104618, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35604769

RESUMO

A transfection vector that can home in on tumors is reported. Whereas previous vectors that allow moderately cell selective gene transfection used larger systems, this small-molecule approach paved the way for precise structure-activity relationship optimization. For this, biotin, which mediates cell selectivity, was combined with the potent DNA-binding motif tetralysine-guanidinocarbonypyrrol via a hydrophilic linker, thus enabling SAR-based optimization. The new vector mediated biotin receptor (BR)-selective transfection of cell lines with different BR expression levels. Computer-based analyses of microscopy images revealed a preference of one order of magnitude for the BR-positive cell lines over the BR-negative controls.


Assuntos
Vetores Genéticos , Neoplasias , Biotina/metabolismo , Linhagem Celular , Humanos , Transfecção
6.
Chemistry ; 28(43): e202202024, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833481

RESUMO

Invited for the cover of this issue are Christoph Hirschhäuser and his colleagues from the University of Duisburg-Essen. The image depicts a biotin-labelled transfection vector selectively channelling DNA into a cancer cell. The QR code on the label will lead you to a video abstract (https://youtu.be/OgXfBPZTKGA). Read the full text of the article at 10.1002/chem.202104618.


Assuntos
DNA , DNA/química , Transfecção
7.
Phys Chem Chem Phys ; 23(18): 10953-10963, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33913458

RESUMO

Four amphiphilic peptides were synthesized, characterized, and evaluated regarding their efficiency in the catalysis of direct aldol reactions in water. The lipopeptides differ by having a double lipid chain and a guanidinium pyrrole group functionalizing one Lys side chain. All the samples are composed of the amino acids l-proline (P), l-arginine (R), or l-lysine (K) functionalized with the cationic guanidiniocarbonyl pyrrole unit (GCP), l-tryptophan (W), and l-glycine (G), covalently linked to one or two long aliphatic chains, leading to surfactant-like designs with controlled proline protonation state and different stereoselectivity. Critical aggregation concentrations (cac) were higher in the presence of the GCP group, suggesting that self-assembly depends on charge distribution along the peptide backbone. Cryogenic Transmission Electron Microscopy (Cryo-TEM) and Small Angle X-ray Scattering (SAXS) showed a rich polymorphism including spherical, cylindrical, and bilayer structures. Molecular dynamics simulations performed to assess the lipopeptide polymorphs revealed an excellent agreement with core-shell arrangements derived from SAXS data and provided an atomistic view of the changes incurred by modifying head groups and lipid chains. The resulting nanostructures behaved as excellent catalysts for aldol condensation reactions, in which superior conversions (>99%), high diastereoselectivities (ds = 94 : 6), and enantioselectivities (ee = 92%) were obtained. Our findings contribute to elucidate the effect of nanoscale organization of lipopeptide assemblies in the catalysis of aldol reactions in an aqueous environment.


Assuntos
Aldeídos/química , Lipopeptídeos/química , Microscopia Crioeletrônica , Microscopia Eletrônica de Transmissão , Conformação Molecular , Simulação de Dinâmica Molecular , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Água/química , Difração de Raios X
8.
Beilstein J Org Chem ; 17: 105-114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33519997

RESUMO

We report novel supramolecular polymers, which possess a reversed viscosity/temperature profile. To this end, we developed a series of ditopic monomers featuring two self-complementary binding sites, either the guanidiniocarbonyl pyrrole carboxylic acid (GCP) or the aminopyridine carbonyl pyrrole carboxylic acid (ACP). At low temperatures, small cyclic structures are formed. However, at elevated temperatures, a ring-chain transformation leads to the formation of a supramolecular polymer. We demonstrate that this effect is dependent on the concentration of the solution and on the polarity of the solvent. This effect can counteract the loss of viscosity of the solvent at elevated temperatures, thus opening an application of our systems as viscosity index improvers (VIIs) in working fluids. This was tested for different motor oils and led to the identification of one compound as a promising VII.

9.
Small ; 16(28): e2001044, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32519433

RESUMO

The dual pH-induced reversible self-assembly (PIRSA) of Au-nanoparticles (Au NPs) is reported, based on their decoration with the self-complementary guanidiniocarbonyl pyrrole carboxylate zwitterion (GCPZ). The assembly of such functionalized Au NPs is found at neutral pH, based on supramolecular pairing of the GCPZ groups. The resulting self-assembled system can be switched back to the disassembled state by addition of base or acid. Two predominant effects that contribute to the dual-PIRSA of Au NPs are identified, namely the ionic hydrogen bonding between the GCPZ groups, but also a strong hydrophobic effect. The contribution of each interaction is depending on the concentration of GCPZ on NPs, which allows to control the self-assembly state over a wide range of different water/solvent ratios.

10.
Acc Chem Res ; 52(6): 1709-1720, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31150198

RESUMO

The guanidinium moiety, which is present in active sites of many enzymes, plays an important role in the binding of anionic substrates. In addition, it was also found to be an excellent binding motif for supramolecular chemistry. Inspired by Nature, scientists have developed artificial receptors containing guanidinium scaffolds that bind to a variety of oxoanions through hydrogen bonding and charge pairing interactions. However, the majority of binding studies is restricted to organic solvents. Polyguanidinium based molecules can form efficient complexes in aqueous solvents due to strong electrostatic interactions. However, they only have moderate association constants, which are significantly decreased in the presence of competing anions and salts. Hence, to improve the binding affinity of the guanidinium moiety, our group developed the cationic guanidiniocarbonyl pyrrole (GCP) moiety. This rigid planar analogue binds efficiently to oxoanions, like carboxylates even in aqueous solvents. The lower p Ka value (7-8) of GCP compared to guanidinium derivatives (p Ka 13) favors the formation of strong, hydrogen bonded ion pairs. In addition, carboxylate binding is further enhanced by additional amide hydrogen bond donors located at the five position of the pyrrole core. Moreover, the design has allowed for introducing secondary interactions between receptor side chains and guest molecules, which allows for optimizing binding specificity and selectivity. The spectroscopic data confirmed stabilization of guanidiniocarbonyl pyrrole/oxoanion complexes through a combination of ion pairing and multiple hydrogen bonding interactions. The key role of the ionic interaction in a polar solvent, is demonstrated by a zwitterion derivative of the guanidiniocarbonyl pyrrole, which self-assembles in both dimethyl sulfoxide and pure water with association constants of K > 1010 M-1 and K = 170 M-1, respectively. In this Account, we discuss strategies for making GCP functionalized compounds, in order to boost their ability to bind oxoanions. Then we explore how these building blocks have been incorporated into different synthetic molecules and peptide sequences, highlighting examples that demonstrated the versatility of this binding scaffold. For instance, the high oxoanion binding property of GCP-based compounds was exploited to generate a detectable signal for sensing applications, thus improving selectivity and sensitivity in aqueous solution. Moreover, peptides and molecules containing GCP have shown excellent gene transfections properties. Furthermore, the self-assembly and zwitterionic behavior of zwitterionic GCP analogues was used to develop variety of supramolecular architectures such as stable supramolecular ß-helix structure, linear supramolecular oligomers, one-dimensional rods or two-dimension sheets, fibers, vesicles, soft nanospheres, as well as stimuli responsive supramolecular gels.


Assuntos
Guanidinas/química , Pirróis/química , Receptores Artificiais/química , Arginina/química , Ácidos Carboxílicos/química , DNA/química , Inibidores Enzimáticos/química , Ligação de Hidrogênio , Peptídeos/química , RNA/química , Triptases/antagonistas & inibidores
11.
Chemistry ; 26(14): 3010-3015, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31840306

RESUMO

Tumor-targeted drug delivery is highly important for improving chemotherapy, as it reduces the dose of cytotoxic agents and minimizes the death of healthy tissues. Towards this goal, a conjugate was synthesized of gossypol and a MCF-7 cancer cell specific CPP (cell penetrating peptide), thus providing a selective drug delivery system. Utilizing the aldehyde moiety of gossypol, the tumor homing CPP RLYMRYYSPTTRRYG was attached through a semi-labile imine linker, which was cleaved in a traceless fashion under aqueous conditions and had a half-life of approximately 10 hours. The conjugate killed MCF-7 cells to a significantly greater extent than HeLa cells or healthy fibroblasts.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Peptídeos Penetradores de Células/química , Gossipol/química , Gossipol/farmacologia , Aldeídos/química , Sequência de Aminoácidos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Fibroblastos/citologia , Células HeLa , Humanos , Iminas/química , Células MCF-7 , Tiazolidinas/química
12.
Biomacromolecules ; 21(6): 2356-2364, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32275399

RESUMO

The synthesis and self-assembly of a polymer featuring a self-complementary supramolecular binding motif guanidiniocarbonyl pyrrole carboxylate zwitterion (GCP-zwitterion) bearing lactose moieties are reported. The GCP-zwitterion acts as a cross-linker to facilitate self-assembly of the polymeric chain into nanoparticles (NPs) at neutral pH in an aqueous medium. The formation of polymeric NPs can be controlled by addition of external stimuli (acid or base), which disfavors self-assembly of the GCP-zwitterion because of protonation or deprotonation of the GCP units in the polymer chain. The small-sized (<40 nm) NPs have a hydrophobic cavity and accessible lactose units on the outer shell for multivalent lectin binding. The multivalent interaction between NPs and the lectin peanut agglutinin was confirmed by agglutination experiments. In addition, the stimuli-responsive property of NPs was exploited for the uptake and release of a hydrophobic guest Nile red. Furthermore, the selectivity toward different cell lines (HEK 296T, HeLa, and Hep2G) was tested, and a cellular uptake of cargo-loaded NPs was found for Hep2G cells bearing the lactose-specific asialogylcoprotein receptor, whereas all other cells showed no NP interaction.


Assuntos
Lectinas , Nanopartículas , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Polímeros
13.
Molecules ; 25(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003366

RESUMO

Two novel isosteric conjugates of guanidiniocarbonyl-pyrrole and 6-bromo-TO (thiazole orange) were prepared, differing only in linker connectivity to cyanine (benzothiazole nitrogen vs. quinoline nitrogen). The quinoline analog was significantly more susceptible to aggregation in an aqueous medium, which resulted in induced circular dichroism (ICD; λ = 450-550 nm) recognition between A-T(U) and G-C basepair containing polynucleotides. The benzothiazole-isostere showed pronounced (four-fold) fluorimetric selectivity toward ds-RNA in comparison to any ds-DNA, at variance to its quinoline-analogue fluorescence being weakly selective to GC-DNA. Preliminary screening on human tumor and normal lung cell lines showed that both dyes very efficiently enter living cells and accumulate in mitochondria, causing moderate cytotoxic effects, and thus could be considered as lead compounds toward novel theragnostic mitochondrial dyes.


Assuntos
Carbocianinas/química , Dicroísmo Circular , DNA/química , Fluorometria , Guanidinas/química , Pirróis/química , RNA de Cadeia Dupla/química , Linhagem Celular Tumoral , Humanos , Cinética , Modelos Moleculares , Desnaturação de Ácido Nucleico , Soluções , Espectrofotometria Ultravioleta
14.
Angew Chem Int Ed Engl ; 59(14): 5567-5571, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31916356

RESUMO

The protein Survivin is highly upregulated in most cancers and considered to be a key player in carcinogenesis. We explored a supramolecular approach to address Survivin as a drug target by inhibiting the protein-protein interaction of Survivin and its functionally relevant binding partner Histone H3. Ligand L1 is based on the guanidiniocarbonyl pyrrole cation and serves as a highly specific anion binder in order to target the interaction between Survivin and Histone H3. NMR titration confirmed binding of L1 to Survivin's Histone H3 binding site. The inhibition of the Survivin-Histone H3 interaction and consequently a reduction of cancer cell proliferation were demonstrated by microscopic and cellular assays.


Assuntos
Histonas/metabolismo , Pirróis/química , Survivina/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Histonas/química , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Ligação Proteica , Pirróis/metabolismo , Pirróis/farmacologia , Survivina/química
15.
Angew Chem Int Ed Engl ; 59(13): 5284-5287, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31814236

RESUMO

We report on a stabilizer of the interaction between 14-3-3ζ and the Estrogen Receptor alpha (ERα). ERα is a driver in the majority of breast cancers and 14-3-3 proteins are negative regulators of this nuclear receptor, making the stabilization of this protein-protein interaction (PPI) an interesting strategy. The stabilizer (1) consists of three symmetric peptidic arms containing an arginine mimetic, previously described as the GCP motif. 1 stabilizes the 14-3-3ζ/ERα interaction synergistically with the natural product Fusicoccin-A and was thus hypothesized to bind to a different site. This is supported by computational analysis of 1 binding to the binary complex of 14-3-3 and an ERα-derived phosphopeptide. Furthermore, 1 shows selectivity towards 14-3-3ζ/ERα interaction over other 14-3-3 client-derived phosphomotifs. These data provide a solid support of a new binding mode for a supramolecular 14-3-3ζ/ERα PPI stabilizer.


Assuntos
Proteínas 14-3-3/química , Receptor alfa de Estrogênio/química , Peptídeos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Arginina/química , Neoplasias da Mama/metabolismo , Glicosídeos/química , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica
16.
Beilstein J Org Chem ; 16: 2201-2211, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983268

RESUMO

A novel naphthalene diimde analogue (NDI) equipped at the imide positions with two guanidinio-carbonyl-pyrrole (GCP) pendant arms interacted significantly stronger with ds-DNA at pH 5 than at pH 7, due to reversible protonation of the GCP arms. This was consequence of a pH-switchable threading intercalation into ds-DNAs only at pH 5, while at neutral conditions (pH 7) NDI-GCP2 switched to the DNA minor groove binding. Intriguingly, NDI-GCP2 was at both pH values studied bound to the ds-RNA major groove, still showing a higher affinity and thermal denaturation effect at pH 5 due to GCP protonation. At excess over the DNA/RNA conjugate NDI-GCP2 showed also aggregation along the ds-polynucleotide and AFM and DLS demonstrated that NDI-GCP2 has pronounced ds-DNA condensation ability.

17.
Chembiochem ; 20(11): 1410-1416, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30681250

RESUMO

Branched and dendrimeric cationic peptides have shown better transfection efficiency than linear peptides, owing to their superior capacity for inducing DNA condensation. We have designed and synthesized two analogously guanidinocarbonylpyrrole-substituted (GCP-substituted) branched cationic tripeptides that provide extremely strong electrostatic attraction towards DNA. Both ligands 1 and 2 can bind to DNA and form condensed complexes, owing to the branched structure and high positive charges, as demonstrated by isothermal titration calorimetry (ITC), ζ potential and atomic force microscopy (AFM). After the replacement of the carboxylate group by an amide group, binding of ligand 2 to DNA shows exothermic enthalpy and positive entropy changes relative to ligand 1. Rational interpretation would suggest that ligand 2 might aid the translocation of plasmid pF143 to HEK 293T cells, showing high gene transfection efficiency. This work therefore provides a facile way, by modifying a branched cationic tripeptide with GCP, to turn a peptide even a tripeptide into an efficient gene transfection vector.


Assuntos
DNA/química , Peptídeos/química , Transfecção/métodos , Técnicas de Transferência de Genes , Vetores Genéticos , Células HEK293 , Humanos
18.
Chembiochem ; 20(23): 2921-2926, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31168888

RESUMO

Modulation of protein-protein interactions (PPIs) is essential for understanding and tuning biologically relevant processes. Although inhibitors for PPIs are widely used, the field still lacks the targeted design of stabilizers. Here, we report unnatural stabilizers based on the combination of multivalency effects and the artificial building block guanidiniocarbonylpyrrol (GCP), an arginine mimetic. Unlike other GCP-based ligands that modulate PPIs in different protein targets, only a tetrameric design shows potent activity as stabilizer of the 14-3-3ζ/C-Raf and 14-3-3ζ/Tau complexes in the low-micromolar range. This evidences the role of multivalency for achieving higher specificity in the modulation of PPIs.


Assuntos
Proteínas 14-3-3/metabolismo , Guanidinas/química , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-raf/metabolismo , Pirróis/química , Proteínas tau/metabolismo , Proteínas 14-3-3/química , Sítios de Ligação , Ligantes , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-raf/química , Proteínas tau/química
19.
Chemistry ; 25(57): 13088-13093, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31441544

RESUMO

A convenient supramolecular strategy for constructing a ratiometric fluorescent chemosensing ensemble, consisting of a macrocyclic host (cucurbit[8]uril CB[8]), and a pyrene-tagged amphiphilic peptide beacon (AP 1), is reported. AP 1 unfolds upon encapsulation of the pyrene termini into the hydrophobic CB[8] cavity. This changes pyrene excimer to monomer emission. Substrates with higher affinity for the CB[8] cavity can displace AP 1 from the ensemble. The released AP 1 folds again to form a pyrene excimer, which allows for the ratiometric fluorescence monitoring of the substrate. In this report, the ensemble capacity for ratiometric fluorescence monitoring of biological substrates, such as amino acid derivatives, specific peptides, and proteins, in aqueous media is demonstrated.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Substâncias Macromoleculares/química , Oligopeptídeos/química , Peptídeos/análise , Pirenos/química , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Fluorescência , Imidazóis/metabolismo , Oligopeptídeos/metabolismo , Peptídeos/química , Água/química
20.
Soft Matter ; 15(36): 7117-7121, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31503269

RESUMO

In this contribution we describe a novel hydrogelator based on four guadiniumcarbonylpyrrole units in combination with aggregation-induced emission active aromatic thioethers which undergo self-assembly into fibrills in aqueous media as visible in AFM and TEM measurements. These fibrills are weakly luminescent and unable to induce gelation. Upon addition of malonic acid a cross-linking of the single fibres was detected leading to the formation of a highly emissive stable hydrogel. This gel responds to several external stimuli such as heat, shaking as well as pH changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA