Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 15(2): e0008913, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33592059

RESUMO

BACKGROUND: Melioidosis is an endemic disease in southeast Asia and northern Australia caused by the saprophytic bacteria Burkholderia pseudomallei, with a high mortality rate. The clinical presentation is multifaceted, with symptoms ranging from acute septicemia to multiple chronic abscesses. Here, we report a chronic case of melioidosis in a patient who lived in Malaysia in the 70s and was suspected of contracting tuberculosis. Approximately 40 years later, in 2014, he was diagnosed with pauci-symptomatic melioidosis during a routine examination. Four strains were isolated from a single sample. They showed divergent morphotypes and divergent antibiotic susceptibility, with some strains showing resistance to trimethoprim-sulfamethoxazole and fluoroquinolones. In 2016, clinical samples were still positive for B. pseudomallei, and only one type of strain, showing atypical resistance to meropenem, was isolated. PRINCIPAL FINDINGS: We performed whole genome sequencing and RT-qPCR analysis on the strains isolated during this study to gain further insights into their differences. We thus identified two types of resistance mechanisms in these clinical strains. The first one was an adaptive and transient mechanism that disappeared during the course of laboratory sub-cultures; the second was a mutation in the efflux pump regulator amrR, associated with the overexpression of the related transporter. CONCLUSION: The development of such mechanisms may have a clinical impact on antibiotic treatment. Indeed, their transient nature could lead to an undiagnosed resistance. Efflux overexpression due to mutation leads to an important multiple resistance, reducing the effectiveness of antibiotics during treatment.


Assuntos
Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia pseudomallei/genética , Farmacorresistência Bacteriana Múltipla/genética , Melioidose/microbiologia , Idoso de 80 Anos ou mais , Antibacterianos , Humanos , Malásia , Masculino , Proteínas de Membrana Transportadoras/genética , Meropeném , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase em Tempo Real , Combinação Trimetoprima e Sulfametoxazol , Sequenciamento Completo do Genoma
2.
Sci Rep ; 9(1): 2501, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792499

RESUMO

Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a very sensitive widespread technique considered as the gold standard to explore transcriptional variations. While a particular methodology has to be followed to provide accurate results many published studies are likely to misinterpret results due to lack of minimal quality requirements. Yersinia pestis is a highly pathogenic bacterium responsible for plague. It has been used to propose a ready-to-use and complete approach to mitigate the risk of technical biases in transcriptomic studies. The selection of suitable reference genes (RGs) among 29 candidates was performed using four different methods (GeNorm, NormFinder, BestKeeper and the Delta-Ct method). An overall comprehensive ranking revealed that 12 following candidate RGs are suitable for accurate normalization: gmk, proC, fabD, rpoD, nadB, rho, thrA, ribD, mutL, rpoB, adk and tmk. Some frequently used genes like 16S RNA had even been found as unsuitable to study Y. pestis. This methodology allowed us to demonstrate, under different temperatures and states of growth, significant transcriptional changes of six efflux pumps genes involved in physiological aspects as antimicrobial resistance or virulence. Previous transcriptomic studies done under comparable conditions had not been able to highlight these transcriptional modifications. These results highlight the importance of validating RGs prior to the normalization of transcriptional expression levels of targeted genes. This accurate methodology can be extended to any gene of interest in Y. pestis. More generally, the same workflow can be applied to identify and validate appropriate RGs in other bacteria to study transcriptional variations.


Assuntos
Proteínas de Bactérias/genética , Perfilação da Expressão Gênica/normas , Yersinia pestis/crescimento & desenvolvimento , Biologia Computacional , Regulação Bacteriana da Expressão Gênica , Padrões de Referência , Temperatura , Fluxo de Trabalho , Yersinia pestis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA