Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(38): e2205610119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095180

RESUMO

Biomass burning organic aerosol (BBOA) in the atmosphere contains many compounds that absorb solar radiation, called brown carbon (BrC). While BBOA is in the atmosphere, BrC can undergo reactions with oxidants such as ozone which decrease absorbance, or whiten. The effect of temperature and relative humidity (RH) on whitening has not been well constrained, leading to uncertainties when predicting the direct radiative effect of BrC on climate. Using an aerosol flow-tube reactor, we show that the whitening of BBOA by oxidation with ozone is strongly dependent on RH and temperature. Using a poke-flow technique, we show that the viscosity of BBOA also depends strongly on these conditions. The measured whitening rate of BrC is described well with the viscosity data, assuming that the whitening is due to oxidation occurring in the bulk of the BBOA, within a thin shell beneath the surface. Using our combined datasets, we developed a kinetic model of this whitening process, and we show that the lifetime of BrC is 1 d or less below ∼1 km in altitude in the atmosphere but is often much longer than 1 d above this altitude. Including this altitude dependence of the whitening rate in a chemical transport model causes a large change in the predicted warming effect of BBOA on climate. Overall, the results illustrate that RH and temperature need to be considered to understand the role of BBOA in the atmosphere.


Assuntos
Atmosfera , Biomassa , Carbono , Atmosfera/química , Carbono/análise , Ozônio
2.
Environ Sci Technol ; 57(39): 14548-14557, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37729583

RESUMO

Smoke particles generated by burning biomass consist mainly of organic aerosol termed biomass burning organic aerosol (BBOA). BBOA influences the climate by scattering and absorbing solar radiation or acting as nuclei for cloud formation. The viscosity and the phase behavior (i.e., the number and type of phases present in a particle) are properties of BBOA that are expected to impact several climate-relevant processes but remain highly uncertain. We studied the phase behavior of BBOA using fluorescence microscopy and showed that BBOA particles comprise two organic phases (a hydrophobic and a hydrophilic phase) across a wide range of atmospheric relative humidity (RH). We determined the viscosity of the two phases at room temperature using a photobleaching method and showed that the two phases possess different RH-dependent viscosities. The viscosity of the hydrophobic phase is largely independent of the RH from 0 to 95%. We use the Vogel-Fulcher-Tamman equation to extrapolate our results to colder and warmer temperatures, and based on the extrapolation, the hydrophobic phase is predicted to be glassy (viscosity >1012 Pa s) for temperatures less than 230 K and RHs below 95%, with possible implications for heterogeneous reaction kinetics and cloud formation in the atmosphere. Using a kinetic multilayer model (KM-GAP), we investigated the effect of two phases on the atmospheric lifetime of brown carbon within BBOA, which is a climate-warming agent. We showed that the presence of two phases can increase the lifetime of brown carbon in the planetary boundary layer and polar regions compared to previous modeling studies. Hence, the presence of two phases can lead to an increase in the predicted warming effect of BBOA on the climate.


Assuntos
Atmosfera , Carbono , Viscosidade , Biomassa , Atmosfera/química , Aerossóis
3.
Environ Sci Technol ; 51(15): 8376-8383, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28661663

RESUMO

The restructuring of monodisperse soot aggregates due to coatings of secondary organic aerosol (SOA) was investigated in a series of photo-oxidation chamber experiments. Soot aggregates were generated by one of three sources (an ethylene premixed burner, a methane inverted diffusion burner, or a diesel generator), treated by denuding, size-selected by a differential mobility analyzer, and injected into a smog chamber, where they were exposed to the photo-oxidation products of p-xylene, which partitioned to form SOA coatings. The evolution of aggregates from their initial to final morphologies was investigated in situ by mobility and mass measurements and ex situ by transmission electron microscopy. At a given initial aggregate mobility diameter, diesel aggregates are less dense and composed of smaller primary particles than those generated by the two burners, and they restructure to a smaller final mobility diameter. Remarkably, the final degrees of restructuring of aggregates from all three sources exhibit the same linear dependence on the number of primary particles per aggregate. The observed linear relationship, valid for the atmospherically relevant SOA coating investigated here, could allow modelers to predict the evolution of aggregate morphology based on a single property of the aggregates.


Assuntos
Aerossóis , Fuligem , Tamanho da Partícula , Smog , Xilenos
4.
Phys Chem Chem Phys ; 19(6): 4440-4446, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28120966

RESUMO

Intermolecular interactions between pyruvic acid, the simplest α-keto acid, and water are important in bio- and atmospheric chemistry. In this context, the pure rotational spectrum of the pyruvic acid-water complex was measured from 7 to 15 GHz using a cavity-based Fourier-transform microwave spectrometer. In the detected isomer, water acts as a hydrogen bond donor and acceptor, bridging the acidic hydrogen and the keto oxygen. Both a- and b-type transitions were observed; however, c-type transitions were not observed, due to vibrational averaging of the effectively barrier-less wagging motion of the free hydrogen of the water subunit, which results in an effective ground state structure with a plane of symmetry. The mass distribution out of the ab-plane, corrected for the out-of-plane hydrogen atoms of the methyl group, confirms that the complex has a plane of symmetry. The observed transitions exhibit splittings due to internal rotations of the water subunit and the methyl group. The proposed internal rotation of water nominally breaks one hydrogen bond, so it is remarkable that the barrier was calculated to be as low as 5.2 kJ mol-1; however, a non-covalent interactions analysis indicates that water rotation has surprisingly little effect on the interactions between the water and pyruvic acid subunits. The barrier to methyl internal rotation was determined to be about 4.6 kJ mol-1 experimentally, significantly higher than that of the pyruvic acid monomer. In general, the structure and dynamics investigated here provide insights into the interactions between pyruvic acid and water that dictate the fate of pyruvic acid in aqueous aerosols and living cells.

5.
J Phys Chem A ; 121(45): 8625-8631, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29049883

RESUMO

The structure and internal dynamics of p-toluic acid and its 1:1 complex with water were investigated in the gas phase using chirped-pulse and cavity-based Fourier transform microwave spectroscopy. One conformer and one isomer were identified for the monomer and monohydrate, respectively. In the monohydrate, water acts as both a hydrogen bond donor and acceptor, participating in a six-membered intermolecular ring with the carboxyl group. Both a- and b-type transitions were observed for the monomer; only a-type transitions were observed for the monohydrate. Rotational transitions of both species show splittings originating from methyl internal rotation, for which the potentials include 3- and 6-fold symmetry terms of similar amplitude. For the monomer, a few b-type transitions are missing, and their intensities were found to be transferred to c-type transitions with common energy levels, which are otherwise forbidden. No splittings attributable to a water internal tunneling motion were observed for the monohydrate. Furthermore, the absence of c-type transitions in the spectrum of the monohydrate, despite the large µc dipole moment component of the equilibrium geometry obtained by ab initio calculations, is consistent with a barrierless wagging motion of the free hydrogen of water, leading to an average µc dipole moment component of zero. These results provide insights regarding the interactions between atmospheric p-toluic acid and water in prenucleation complexes and at the air-water interface of aqueous aerosols, where p-toluic acid may act as a surfactant.

6.
Phys Chem Chem Phys ; 18(1): 448-57, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26616640

RESUMO

o-Toluic acid, a photo-oxidation product in the atmosphere, and its monohydrate were characterized in the gas phase by pure rotational spectroscopy. High-resolution spectra were measured in the range of 5-14 Hz using a cavity-based molecular beam Fourier-transform microwave spectrometer. Possible conformers were identified computationally, at the MP2/6-311++G(2df,2pd) level of theory. For both species, one conformer was identified experimentally, and no methyl internal rotation splittings were observed, indicative of relatively high barriers to rotation. In the monomer, rocking of the carboxylic acid group is a large amplitude motion, characterized by a symmetrical double-well potential. This and other low-lying out-of-plane vibrations contribute to a significant (methyl top-corrected) inertial defect (-1.09 amu Å(2)). In the monohydrate, wagging of the free hydrogen atom of water is a second large amplitude motion, so the average structure is planar. As a result, no c-type transitions were observed. Water tunneling splittings were not observed, because the water rotation coordinate is characterized by an asymmetrical double-well potential. Since the minima are not degenerate, tunneling is precluded. Furthermore, a concerted tunneling path involving simultaneous rotation of the water moiety and rocking of the carboxylic acid group is precluded, because the hilltop along this coordinate is a virtual, rather than a real, saddle-point. Inter- and intramolecular non-covalent bonding is discussed in terms of the quantum theory of atoms in molecules. The percentage of o-toluic acid hydrated in the atmosphere is estimated to be about 0.1% using statistical thermodynamics.

7.
Phys Chem Chem Phys ; 17(34): 21942-9, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26234934

RESUMO

Pure rotational spectra of a prototypical prochiral ester, methyl benzoylformate (MBF), and the product of its enantioselective reduction, (R)-(-)-methyl mandelate (MM), were measured in the range of 5-16 GHz, using a cavity-based molecular beam Fourier-transform microwave spectrometer. Potential conformers were located using density functional theory calculations, and one conformer of each species was identified experimentally. The minimum energy conformer of MBF, in which the ester group is in a Z orientation, was observed for the first time. Based on an atoms-in-molecules analysis, MBF contains a weak CH···O=C hydrogen bond between the carbonyl oxygen atom of the ester group and the nearest hydrogen atom of the aromatic ring. In the minimum energy conformer of MM, the ester group is oriented to accommodate a hydrogen bond between the hydrogen atom of the hydroxyl group and the carbonyl oxygen atom (OH···O=C), rather than the sp(3) oxygen atom (OH···O-C). For both species, splittings of the rotational transitions were observed, which are attributed to methyl internal rotation, and the orientations and barrier heights of the methyl tops were determined precisely. The barrier heights for MBF and MM are 4.60(2) and 4.54(3) kJ mol(-1), respectively, which are consistent with values predicted by high-level wavefunction-based calculations. On the basis of an atoms-in-molecules analysis, we propose that destabilization of the sp(3) oxygen atom of the ester group most directly dictates the barrier height.


Assuntos
Glioxilatos/química , Ácidos Mandélicos/química , Rotação , Análise Espectral , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Oxirredução , Teoria Quântica , Estereoisomerismo
8.
Environ Sci Technol ; 48(24): 14309-16, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25390075

RESUMO

Restructuring of monodisperse soot aggregates due to coatings of secondary organic aerosol (SOA) derived from hydroxyl radical-initiated oxidation of toluene, p-xylene, ethylbenzene, and benzene was investigated in a series of photo-oxidation (smog) chamber experiments. Soot aggregates were generated by combustion of ethylene using a McKenna burner, treated by denuding, size-selected by a differential mobility analyzer, and injected into a smog chamber, where they were exposed to low vapor pressure products of aromatic hydrocarbon oxidation, which formed SOA coatings. Aggregate restructuring began once a threshold coating mass was reached, and the degree of the subsequent restructuring increased with mass growth factor. Although significantly compacted, fully processed aggregates were not spherical, with a mass-mobility exponent of 2.78, so additional SOA was required to fill indentations between collapsed branches of the restructured aggregates before the dynamic shape factor of coated particles approached 1. Trends in diameter growth factor, effective density, and dynamic shape factor with increasing mass growth factor indicate distinct stages in soot aggregate processing by SOA coatings. The final degree and coating mass dependence of soot restructuring were found to be the same for SOA coatings from all four aromatic precursors, indicating that the surface tensions of the SOA coatings are similar.


Assuntos
Poluentes Atmosféricos/química , Hidrocarbonetos Aromáticos/química , Fuligem/química , Aerossóis/análise , Derivados de Benzeno , Radical Hidroxila , Oxirredução , Smog
9.
Phys Chem Chem Phys ; 16(6): 2305-14, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24366483

RESUMO

The pure rotational, high-resolution spectrum of the benzoic acid-water complex was measured in the range of 4-14 GHz, using a cavity-based molecular beam Fourier-transform microwave spectrometer. In all, 40 a-type transitions and 2 b-type transitions were measured for benzoic acid-water, and 12 a-type transitions were measured for benzoic acid-D2O. The equilibrium geometry of benzoic acid-water was determined with ab initio calculations, at the B3LYP, M06-2X, and MP2 levels of theory, with the 6-311++G(2df,2pd) basis set. The experimental rotational spectrum is most consistent with the B3LYP-predicted geometry. Narrow splittings were observed in the b-type transitions, and possible tunnelling motions were investigated using the B3LYP/6-311++G(d,p) level of theory. Rotation of the water moiety about the lone electron pair hydrogen-bonded to benzoic acid, across a barrier of 7.0 kJ mol(-1), is the most likely cause for the splitting. Wagging of the unbound hydrogen atom of water is barrier-less, and this large amplitude motion results in the absence of c-type transitions. The interaction and spectroscopic dissociation energies calculated using B3LYP and MP2 are in good agreement, but those calculated using M06-2X indicate excess stabilization, possibly due to dispersive interactions being over-estimated. The equilibrium constant of hydration was calculated by statistical thermodynamics, using ab initio results and the experimental rotational constants. This allowed us to estimate the changes in percentage of hydrated benzoic acid with variations in the altitude, region, and season. Using monitoring data from Calgary, Alberta, and the MP2-predicted dissociation energy, a yearly average of 1% of benzoic acid is expected to be present in the form of benzoic acid-water. However, this percentage depends sensitively on the dissociation energy. For example, when using the M06-2X-predicted dissociation energy, we find it increases to 18%.

10.
Environ Sci Process Impacts ; 24(6): 973-981, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35616932

RESUMO

Azo dyes are the most common colorants in consumer products, including clothing and cosmetics. Some azo dyes and their products from reductive degradation are known to be mutagenic, so dermal exposure to these species has been studied extensively. In contrast, oxidative degradation of azo dyes in consumer products has not been studied so thoroughly. In the indoor environment, ozone is ubiquitous, so reactive uptake of ozone to azo dyes could lead to dermal exposure to other classes of degradation products. Here, we report the first measurements of the reactive uptake of ozone to thin films of three widely used commercial azo dyes: sunset yellow, amaranth, and tartrazine. Steady-state uptake was observed for all three dyes, under all conditions investigated, even at the lowest relative humidity (RH) of 0%. The uptake coefficients increased with RH. For sunset yellow at 100 ppb of ozone, the value at 80% RH, (2.0 ± 0.5) × 10-7, was 2.5 times greater than that at 0% RH, (8 ± 1) × 10-8, consistent with plasticization of the thin film due to absorption of water. The uptake coefficient of sunset yellow at 80% RH exhibited an inverse dependence on the ozone mixing ratio, approaching an asymptote of 1 × 10-7 above 250 ppb. At 80% RH and 100 ppb of ozone, the uptake coefficients for the three dyes were similar, (2.0 ± 0.5) × 10-7 for sunset yellow, (2.7 ± 0.6) × 10-7 for amaranth, and (3.2 ± 0.3) × 10-7 for tartrazine, despite differences in structural parameters related to the number of reactive sites at the surface. Together, these results are consistent with ozone diffusing into the thin film and the dye molecules mixing between the layers, such that reaction is not restricted to the surface of the film. Finally, the results are suggestive of a role for azo dyes, including the occurrence of their oxidation products, in indoor chemistry.


Assuntos
Ozônio , Tartrazina , Compostos Azo , Corantes , Mutagênicos , Ozônio/química
11.
Environ Sci Process Impacts ; 22(11): 2162-2171, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33020783

RESUMO

The climate forcing of light-absorbing organic aerosol, or brown carbon (BrC), emitted from biomass burning may be significant but is currently poorly constrained, in part due to evolution during its residence time in the atmosphere. Here, the effects of ambient relative humidity (RH) and particle volatility on the heterogeneous OH oxidation of primary BrC were investigated in laboratory experiments. Particles were generated from smoldering pine wood, isolated from gaseous emissions, conditioned at 200 °C in a thermal denuder to remove the most volatile particulate organics, and injected into a smog chamber, where they were conditioned at either 15 or 60% RH and exposed to gas phase OH radicals. Changes in composition were monitored using an aerosol mass spectrometer (AMS), and changes in absorption at 405 nm were monitored using a photoacoustic spectrometer. Heterogeneous OH oxidation of nascent BrC at 60% RH resulted in steady increases in the AMS fraction of CO2+ (associated with carboxylic acids), the O : C ratio, and the carbon oxidation state, consistent with extensive functionalization. These composition changes corresponded first to very rapid absorption enhancement and then bleaching. Net bleaching was observed after the equivalent of 10 h residence time in the atmosphere. The evolution did not depend strongly on RH, consistent with homogeneously well-mixed primary BrC even at 15% RH at room temperature. In contrast, the evolution did depend strongly on the pre-treatment of the particles, such that only bleaching occurred for particles treated at 200 °C. This suggests that lower volatility constituents of ambient primary BrC have less capacity for absorption enhancement in the atmosphere upon heterogeneous oxidation, potentially as they are already more functionalized and/or oligomeric.


Assuntos
Carbono , Aerossóis , Biomassa , Umidade , Volatilização
12.
J Phys Chem Lett ; 7(7): 1143-7, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26963633

RESUMO

Using rotational spectroscopy, we have observed two isomers of the monohydrate of oxalic acid, the most abundant dicarboxylic acid in the atmosphere. In the lowest-energy isomer, water hydrogen-bonds to both carboxylic acid groups, and the barrier to decarboxylation decreases. In the second isomer, water bonds to only one carboxylic acid group, and the barrier increases. Though the lower barrier in the former is not unequivocal evidence that water acts as a photocatalyst, the higher barrier in the latter indicates that water acts as an inhibitor in this topology. Oxalic acid is unique among dicarboxylic acids: for the higher homologues calculated, the inhibiting topology of the monohydrate is lowest in energy and most abundant under atmospheric conditions. Consequently, oxalic acid is the only dicarboxylic acid for which single-water catalysis of overtone-induced decarboxylation in the atmosphere is plausible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA