Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Theor Biol ; 531: 110901, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34530030

RESUMO

The formation of spatial structures lies at the heart of developmental processes. However, many of the underlying gene regulatory and biochemical processes remain poorly understood. Turing patterns constitute a main candidate to explain such processes, but they appear sensitive to fluctuations and variations in kinetic parameters, raising the question of how they may be adopted and realised in naturally evolved systems. The vast majority of mathematical studies of Turing patterns have used continuous models specified in terms of partial differential equations. Here, we complement this work by studying Turing patterns using discrete cellular automata models. We perform a large-scale study on all possible two-species networks and find the same Turing pattern producing networks as in the continuous framework. In contrast to continuous models, however, we find these Turing pattern topologies to be substantially more robust to changes in the parameters of the model. We also find that diffusion-driven instabilities are substantially weaker predictors for Turing patterns in our discrete modelling framework in comparison to the continuous case, in the sense that the presence of an instability does not guarantee a pattern emerging in simulations. We show that a more refined criterion constitutes a stronger predictor. The similarity of the results for the two modelling frameworks suggests a deeper underlying principle of Turing mechanisms in nature. Together with the larger robustness in the discrete case this suggests that Turing patterns may be more robust than previously thought.


Assuntos
Modelos Biológicos , Difusão , Cinética
2.
Philos Trans A Math Phys Eng Sci ; 379(2213): 20200272, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34743598

RESUMO

Turing patterns have morphed from mathematical curiosities into highly desirable targets for synthetic biology. For a long time, their biological significance was sometimes disputed but there is now ample evidence for their involvement in processes ranging from skin pigmentation to digit and limb formation. While their role in developmental biology is now firmly established, their synthetic design has so far proved challenging. Here, we review recent large-scale mathematical analyses that have attempted to narrow down potential design principles. We consider different aspects of robustness of these models and outline why this perspective will be helpful in the search for synthetic Turing-patterning systems. We conclude by considering robustness in the context of developmental modelling more generally. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.


Assuntos
Modelos Biológicos , Biologia Sintética , Morfogênese
3.
PLoS Comput Biol ; 15(11): e1007442, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31682604

RESUMO

Large-scale neural recording methods now allow us to observe large populations of identified single neurons simultaneously, opening a window into neural population dynamics in living organisms. However, distilling such large-scale recordings to build theories of emergent collective dynamics remains a fundamental statistical challenge. The neural field models of Wilson, Cowan, and colleagues remain the mainstay of mathematical population modeling owing to their interpretable, mechanistic parameters and amenability to mathematical analysis. Inspired by recent advances in biochemical modeling, we develop a method based on moment closure to interpret neural field models as latent state-space point-process models, making them amenable to statistical inference. With this approach we can infer the intrinsic states of neurons, such as active and refractory, solely from spiking activity in large populations. After validating this approach with synthetic data, we apply it to high-density recordings of spiking activity in the developing mouse retina. This confirms the essential role of a long lasting refractory state in shaping spatiotemporal properties of neonatal retinal waves. This conceptual and methodological advance opens up new theoretical connections between mathematical theory and point-process state-space models in neural data analysis.


Assuntos
Biologia Computacional/métodos , Neuroimagem/métodos , Potenciais de Ação/fisiologia , Algoritmos , Animais , Teorema de Bayes , Mapeamento Encefálico/métodos , Interpretação Estatística de Dados , Humanos , Modelos Neurológicos , Modelos Teóricos , Rede Nervosa/fisiologia , Neurônios/fisiologia
4.
J Chem Phys ; 152(14): 144106, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295361

RESUMO

Stochastic models are key to understanding the intricate dynamics of gene expression. However, the simplest models that only account for active and inactive states of a gene fail to capture common observations in both prokaryotic and eukaryotic organisms. Here, we consider multistate models of gene expression that generalize the canonical Telegraph process and are capable of capturing the joint effects of transcription factors, heterochromatin state, and DNA accessibility (or, in prokaryotes, sigma-factor activity) on transcript abundance. We propose two approaches for solving classes of these generalized systems. The first approach offers a fresh perspective on a general class of multistate models and allows us to "decompose" more complicated systems into simpler processes, each of which can be solved analytically. This enables us to obtain a solution of any model from this class. Next, we develop an approximation method based on a power series expansion of the stationary distribution for an even broader class of multistate models of gene transcription. We further show that models from both classes cannot have a heavy-tailed distribution in the absence of extrinsic noise. The combination of analytical and computational solutions for these realistic gene expression models also holds the potential to design synthetic systems and control the behavior of naturally evolved gene expression systems in guiding cell-fate decisions.


Assuntos
DNA/genética , Expressão Gênica , Modelos Genéticos , Processos Estocásticos
5.
J Math Biol ; 80(6): 1919-1951, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32211950

RESUMO

It is well known that stochastically modeled reaction networks that are complex balanced admit a stationary distribution that is a product of Poisson distributions. In this paper, we consider the following related question: supposing that the initial distribution of a stochastically modeled reaction network is a product of Poissons, under what conditions will the distribution remain a product of Poissons for all time? By drawing inspiration from Crispin Gardiner's "Poisson representation" for the solution to the chemical master equation, we provide a necessary and sufficient condition for such a product-form distribution to hold for all time. Interestingly, the condition is a dynamical "complex-balancing" for only those complexes that have multiplicity greater than or equal to two (i.e. the higher order complexes that yield non-linear terms to the dynamics). We term this new condition the "dynamical and restricted complex balance" condition (DR for short).


Assuntos
Modelos Biológicos , Biologia de Sistemas/estatística & dados numéricos , Redes Reguladoras de Genes , Cinética , Modelos Lineares , Cadeias de Markov , Conceitos Matemáticos , Redes e Vias Metabólicas , Modelos Químicos , Dinâmica não Linear , Distribuição de Poisson , Transdução de Sinais , Processos Estocásticos
6.
Phys Rev Lett ; 119(21): 210601, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29219406

RESUMO

We consider the problem of computing first-passage time distributions for reaction processes modeled by master equations. We show that this generally intractable class of problems is equivalent to a sequential Bayesian inference problem for an auxiliary observation process. The solution can be approximated efficiently by solving a closed set of coupled ordinary differential equations (for the low-order moments of the process) whose size scales with the number of species. We apply it to an epidemic model and a trimerization process and show good agreement with stochastic simulations.

7.
J Chem Phys ; 143(18): 185101, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26567686

RESUMO

In recent years, moment-closure approximations (MAs) of the chemical master equation have become a popular method for the study of stochastic effects in chemical reaction systems. Several different MA methods have been proposed and applied in the literature, but it remains unclear how they perform with respect to each other. In this paper, we study the normal, Poisson, log-normal, and central-moment-neglect MAs by applying them to understand the stochastic properties of chemical systems whose deterministic rate equations show the properties of bistability, ultrasensitivity, and oscillatory behaviour. Our results suggest that the normal MA is favourable over the other studied MAs. In particular, we found that (i) the size of the region of parameter space where a closure gives physically meaningful results, e.g., positive mean and variance, is considerably larger for the normal closure than for the other three closures, (ii) the accuracy of the predictions of the four closures (relative to simulations using the stochastic simulation algorithm) is comparable in those regions of parameter space where all closures give physically meaningful results, and (iii) the Poisson and log-normal MAs are not uniquely defined for systems involving conservation laws in molecule numbers. We also describe the new software package MOCA which enables the automated numerical analysis of various MA methods in a graphical user interface and which was used to perform the comparative analysis presented in this paper. MOCA allows the user to develop novel closure methods and can treat polynomial, non-polynomial, as well as time-dependent propensity functions, thus being applicable to virtually any chemical reaction system.

8.
J Chem Phys ; 141(8): 084103, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25173001

RESUMO

Approximations based on moment-closure (MA) are commonly used to obtain estimates of the mean molecule numbers and of the variance of fluctuations in the number of molecules of chemical systems. The advantage of this approach is that it can be far less computationally expensive than exact stochastic simulations of the chemical master equation. Here, we numerically study the conditions under which the MA equations yield results reflecting the true stochastic dynamics of the system. We show that for bistable and oscillatory chemical systems with deterministic initial conditions, the solution of the MA equations can be interpreted as a valid approximation to the true moments of the chemical master equation, only when the steady-state mean molecule numbers obtained from the chemical master equation fall within a certain finite range. The same validity criterion for monostable systems implies that the steady-state mean molecule numbers obtained from the chemical master equation must be above a certain threshold. For mean molecule numbers outside of this range of validity, the MA equations lead to either qualitatively wrong oscillatory dynamics or to unphysical predictions such as negative variances in the molecule numbers or multiple steady-state moments of the stationary distribution as the initial conditions are varied. Our results clarify the range of validity of the MA approach and show that pitfalls in the interpretation of the results can only be overcome through the systematic comparison of the solutions of the MA equations of a certain order with those of higher orders.


Assuntos
Simulação por Computador , Modelos Químicos , Processos Estocásticos , Cinética , Probabilidade
9.
J Chem Phys ; 141(2): 024103, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25027995

RESUMO

The chemical Langevin equation (CLE) is a popular simulation method to probe the stochastic dynamics of chemical systems. The CLE's main disadvantage is its break down in finite time due to the problem of evaluating square roots of negative quantities whenever the molecule numbers become sufficiently small. We show that this issue is not a numerical integration problem, rather in many systems it is intrinsic to all representations of the CLE. Various methods of correcting the CLE have been proposed which avoid its break down. We show that these methods introduce undesirable artefacts in the CLE's predictions. In particular, for unimolecular systems, these correction methods lead to CLE predictions for the mean concentrations and variance of fluctuations which disagree with those of the chemical master equation. We show that, by extending the domain of the CLE to complex space, break down is eliminated, and the CLE's accuracy for unimolecular systems is restored. Although the molecule numbers are generally complex, we show that the "complex CLE" predicts real-valued quantities for the mean concentrations, the moments of intrinsic noise, power spectra, and first passage times, hence admitting a physical interpretation. It is also shown to provide a more accurate approximation of the chemical master equation of simple biochemical circuits involving bimolecular reactions than the various corrected forms of the real-valued CLE, the linear-noise approximation and a commonly used two moment-closure approximation.


Assuntos
Enzimas/química , Modelos Químicos , Processos Estocásticos , Algoritmos , Simulação por Computador , Difusão , Cinética
10.
Cell Syst ; 9(3): 243-257.e4, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31542413

RESUMO

Turing patterns (TPs) underlie many fundamental developmental processes, but they operate over narrow parameter ranges, raising the conundrum of how evolution can ever discover them. Here we explore TP design space to address this question and to distill design rules. We exhaustively analyze 2- and 3-node biological candidate Turing systems, amounting to 7,625 networks and more than 3 × 1011 analyzed scenarios. We find that network structure alone neither implies nor guarantees emergent TPs. A large fraction (>61%) of network design space can produce TPs, but these are sensitive to even subtle changes in parameters, network structure, and regulatory mechanisms. This implies that TP networks are more common than previously thought, and evolution might regularly encounter prototypic solutions. We deduce compositional rules for TP systems that are almost necessary and sufficient (96% of TP networks contain them, and 92% of networks implementing them produce TPs). This comprehensive network atlas provides the blueprints for identifying natural TPs and for engineering synthetic systems.


Assuntos
Modelos Biológicos , Redes Neurais de Computação , Biologia Sintética/métodos , Animais , Atlas como Assunto , Padronização Corporal , Heurística Computacional , Humanos , Morfogênese
11.
Nat Commun ; 7: 11729, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27222432

RESUMO

Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA