Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Gen Virol ; 101(10): 1025-1026, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32940596

RESUMO

Caulimoviridae is a family of non-enveloped reverse-transcribing plant viruses with non-covalently closed circular dsDNA genomes of 7.1-9.8 kbp in the order Ortervirales. They infect a wide range of monocots and dicots. Some viruses cause economically important diseases of tropical and subtropical crops. Transmission occurs through insect vectors (aphids, mealybugs, leafhoppers, lace bugs) and grafting. Activation of infectious endogenous viral elements occurs in Musa balbisiana, Petunia hybrida and Nicotiana edwardsonii. However, most endogenous caulimovirids are not infectious. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Caulimoviridae, which is available at ictv.global/report/caulimoviridae.


Assuntos
Caulimoviridae , Caulimoviridae/classificação , Caulimoviridae/fisiologia , Caulimoviridae/ultraestrutura , Genoma Viral , Plantas/virologia , Replicação Viral
2.
J Exp Bot ; 67(7): 2039-48, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26687180

RESUMO

The genomes of many plant viruses have a coding capacity limited to <10 proteins, yet it is becoming increasingly clear that individual plant virus proteins may interact with several targets in the host for establishment of infection. As new functions are uncovered for individual viral proteins, virologists have realized that the apparent simplicity of the virus genome is an illusion that belies the true impact that plant viruses have on host physiology. In this review, we discuss our evolving understanding of the function of the P6 protein of Cauliflower mosaic virus (CaMV), a process that was initiated nearly 35 years ago when the CaMV P6 protein was first described as the 'major inclusion body protein' (IB) present in infected plants. P6 is now referred to in most articles as the transactivator (TAV)/viroplasmin protein, because the first viral function to be characterized for the Caulimovirus P6 protein beyond its role as an inclusion body protein (the viroplasmin) was its role in translational transactivation (the TAV function). This review will discuss the currently accepted functions for P6 and then present the evidence for an entirely new function for P6 in intracellular movement.


Assuntos
Caulimovirus/fisiologia , Doenças das Plantas/virologia , Transativadores/fisiologia , Proteínas Virais/fisiologia , Modelos Biológicos , Movimento , Vírion/fisiologia
3.
Plant Physiol ; 166(3): 1345-58, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25239023

RESUMO

The P6 protein of Cauliflower mosaic virus (CaMV) is responsible for the formation of inclusion bodies (IBs), which are the sites for viral gene expression, replication, and virion assembly. Moreover, recent evidence indicates that ectopically expressed P6 inclusion-like bodies (I-LBs) move in association with actin microfilaments. Because CaMV virions accumulate preferentially in P6 IBs, we hypothesized that P6 IBs have a role in delivering CaMV virions to the plasmodesmata. We have determined that the P6 protein interacts with a C2 calcium-dependent membrane-targeting protein (designated Arabidopsis [Arabidopsis thaliana] Soybean Response to Cold [AtSRC2.2]) in a yeast (Saccharomyces cerevisiae) two-hybrid screen and have confirmed this interaction through coimmunoprecipitation and colocalization assays in the CaMV host Nicotiana benthamiana. An AtSRC2.2 protein fused to red fluorescent protein (RFP) was localized to the plasma membrane and specifically associated with plasmodesmata. The AtSRC2.2-RFP fusion also colocalized with two proteins previously shown to associate with plasmodesmata: the host protein Plasmodesmata-Localized Protein1 (PDLP1) and the CaMV movement protein (MP). Because P6 I-LBs colocalized with AtSRC2.2 and the P6 protein had previously been shown to interact with CaMV MP, we investigated whether P6 I-LBs might also be associated with plasmodesmata. We examined the colocalization of P6-RFP I-LBs with PDLP1-green fluorescent protein (GFP) and aniline blue (a stain for callose normally observed at plasmodesmata) and found that P6-RFP I-LBs were associated with each of these markers. Furthermore, P6-RFP coimmunoprecipitated with PDLP1-GFP. Our evidence that a portion of P6-GFP I-LBs associate with AtSRC2.2 and PDLP1 at plasmodesmata supports a model in which P6 IBs function to transfer CaMV virions directly to MP at the plasmodesmata.


Assuntos
Proteínas de Arabidopsis/metabolismo , Caulimovirus/metabolismo , Plasmodesmos/metabolismo , Proteínas Virais/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caulimovirus/patogenicidade , Membrana Celular/metabolismo , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Corpos de Inclusão Viral/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Nicotiana/virologia , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética , Vírion/metabolismo , Proteína Vermelha Fluorescente
5.
Mol Plant Microbe Interact ; 26(2): 240-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23075040

RESUMO

In this study, we screened 22 Nicotiana spp. for resistance to the tombusviruses Tomato bushy stunt virus (TBSV), Cucumber necrosis virus, and Cymbidium ringspot virus. Eighteen species were resistant, and resistance was manifested in at least two different categories. In all, 13 species responded with a hypersensitive response (HR)-type resistance, whereas another five were resistant but either had no visible response or responded with chlorotic lesions rather than necrotic lesions. Three different TBSV proteins were found to trigger HR in Nicotiana spp. in an agroinfiltration assay. The most common avirulence (avr) determinant was the TBSV coat protein P41, a protein that had not been previously recognized as an avr determinant. A mutational analysis confirmed that the coat protein rather than the viral RNA sequence was responsible for triggering HR, and it triggered HR in six species in the Alatae section. The TBSV P22 movement protein triggered HR in two species in section Undulatae (Nicotiana glutinosa and N. edwardsonii) and one species in section Alatae (N. forgetiana). The TBSV P19 RNA silencing suppressor protein triggered HR in sections Sylvestres (N. sylvestris), Nicotiana (N. tabacum), and Alatae (N. bonariensis). In general, Nicotiana spp. were capable of recognizing only one tombusvirus avirulence determinant, with the exceptions of N. bonariensis and N. forgetiana, which were each able to recognize P41, as well as P19 and P22, respectively. Agroinfiltration failed to detect the TBSV avr determinants responsible for triggering HR in N. arentsii, N. undulata, and N. rustica. This study illustrates the breadth and variety of resistance responses to tombusviruses that exists in the Nicotiana genus.


Assuntos
Resistência à Doença , Nicotiana/imunologia , Doenças das Plantas/imunologia , Tombusvirus/patogenicidade , Proteínas Virais/metabolismo , Proteínas do Capsídeo/genética , Inativação Gênica , Interações Hospedeiro-Patógeno , Mutação , Doenças das Plantas/virologia , Folhas de Planta/imunologia , Folhas de Planta/virologia , RNA Viral/genética , RNA Viral/metabolismo , Nicotiana/genética , Nicotiana/virologia , Tombusvirus/imunologia , Tombusvirus/fisiologia , Proteínas Virais/genética , Virulência
6.
Plant Physiol ; 155(4): 1908-19, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21278309

RESUMO

Transgenic Arabidopsis (Arabidopsis thaliana) plants containing a monomeric copy of the cauliflower mosaic virus (CaMV) genome exhibited the generation of infectious, episomally replicating virus. The circular viral genome had been split within the nonessential gene II for integration into the Arabidopsis genome by Agrobacterium tumefaciens-mediated transformation. Transgenic plants were assessed for episomal infections at flowering, seed set, and/or senescence. The infections were confirmed by western blot for the CaMV P6 and P4 proteins, electron microscopy for the presence of icosahedral virions, and through polymerase chain reaction across the recombination junction. By the end of the test period, a majority of the transgenic Arabidopsis plants had developed episomal infections. The episomal form of the virus was infectious to nontransgenic plants, indicating that no essential functions were lost after release from the Arabidopsis chromosome. An analysis of the viral genomes recovered from either transgenic Arabidopsis or nontransgenic turnip (Brassica rapa var rapa) revealed that the viruses contained deletions within gene II, and in some cases, the deletions extended to the beginning of gene III. In addition, many of the progeny viruses contained small regions of nonviral sequence derived from the flanking transformation vector. The nature of the nucleotide sequences at the recombination junctions in the circular progeny virus indicated that most were generated by nonhomologous recombination during the excision event. The release of the CaMV viral genomes from an integrated copy was not dependent upon the application of environmental stresses but occurred with greater frequency with either age or the late stages of plant maturation.


Assuntos
Arabidopsis/genética , Caulimovirus/genética , Genoma de Planta , Doenças das Plantas/virologia , Plasmídeos/genética , Arabidopsis/virologia , Replicação do DNA , DNA Viral/genética , Mutação INDEL , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , Recombinação Genética , Estresse Fisiológico , Transformação Genética
7.
Mol Plant Microbe Interact ; 24(1): 91-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20977306

RESUMO

We have used an agroinfiltration assay for a comparative study of the roles of tombusvirus P22 and P19 proteins in elicitation of hypersensitive response (HR)-like necrosis and the role of P19 in silencing suppression in Nicotiana species. The advantage of agroinfiltration rather than expression in plant virus vectors is that putative viral avirulence proteins can be evaluated in isolation, eliminating the possibility of synergistic effects with other viral proteins. We found that tombusvirus P22 and P19 proteins elicited HR-like necrosis in certain Nicotiana species but, also, that Nicotiana species could recognize subtle differences in sequence between these proteins. Furthermore, Nicotiana species that responded with systemic necrosis to virion inoculations responded to agroinfiltration of tombusvirus P19 with a very weak and delayed necrosis, indicating that the rapid HR-like necrosis was associated with putative resistance genes and a plant defense response that limited the spread of the virus. Tombusvirus P19 proteins also appeared to differ in their effectiveness as silencing suppressors; in our assay, the P19 proteins of Cymbidium ringspot virus and Tomato bushy stunt virus were stronger silencing suppressors than Cucumber necrosis virus P20. Finally, we show that agroinfiltration can be used to track the presence of putative plant resistance genes in Nicotiana species that target either tombusvirus P19 or P22.


Assuntos
Nicotiana/genética , Doenças das Plantas/virologia , Tombusviridae/genética , Tombusvirus/genética , Proteínas Virais/genética , Clonagem Molecular , Códon/genética , Primers do DNA , Inativação Gênica , Genes Virais , Genoma Viral , Mutagênese , Necrose , Doenças das Plantas/prevenção & controle , Folhas de Planta/virologia , Nicotiana/virologia , Tombusviridae/metabolismo , Tombusvirus/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo
8.
Mol Plant Microbe Interact ; 23(11): 1381-93, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20653412

RESUMO

Plant viruses are obligate organisms that require host components for movement within and between cells. A mechanistic understanding of virus movement will allow the identification of new methods to control virus systemic spread and serve as a model system for understanding host macromolecule intra- and intercellular transport. Recent studies have moved beyond the identification of virus proteins involved in virus movement and their effect on plasmodesmal size exclusion limits to the analysis of their interactions with host components to allow movement within and between cells. It is clear that individual virus proteins and replication complexes associate with and, in some cases, traffic along the host cytoskeleton and membranes. Here, we review these recent findings, highlighting the diverse associations observed between these components and their trafficking capacity. Plant viruses operate individually, sometimes within virus species, to utilize unique interactions between their proteins or complexes and individual host cytoskeletal or membrane elements over time or space for their movement. However, there is not sufficient information for any plant virus to create a complete model of its intracellular movement; thus, more research is needed to achieve that goal.


Assuntos
Transporte Biológico/fisiologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Proteínas do Movimento Viral em Plantas/fisiologia , Vírus de Plantas/fisiologia , Plantas/virologia
9.
Phytopathology ; 100(10): 1111-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20839946

RESUMO

Phakopsora pachyrhizi, the fungal pathogen that causes Asian soybean rust, has the potential to cause significant losses in soybean yield in many production regions of the United States. Germplasm with durable, single-gene resistance is lacking, and control of rust depends on timely application of fungicides. To assist the development of new modes of soybean resistance, we identified peptides from combinatorial phage-display peptide libraries that inhibit germ tube growth from urediniospores of P. pachyrhizi. Two peptides, Sp2 and Sp39, were identified that inhibit germ tube development when displayed as fusions with the coat protein of M13 phage or as fusions with maize cytokinin oxidase/dehydrogenase (ZmCKX1). In either display format, the inhibitory effect of the peptides on germ tube growth was concentration dependent. In addition, when peptides Sp2 or Sp39 in either format were mixed with urediniospores and inoculated to soybean leaves with an 8-h wetness period, rust lesion development was reduced. Peptides Sp2 and Sp39, displayed on ZmCKX1, were found to interact with a 20-kDa protein derived from germinated urediniospores. Incorporating peptides that inhibit pathogen development and pathogenesis into breeding programs may contribute to the development of soybean cultivars with improved, durable rust tolerance.


Assuntos
Basidiomycota/fisiologia , Fungicidas Industriais/farmacologia , Glycine max/genética , Glycine max/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/farmacologia , Fungicidas Industriais/metabolismo , Regulação da Expressão Gênica de Plantas , Biblioteca de Peptídeos , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/metabolismo
10.
Virology ; 547: 57-71, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32560905

RESUMO

Viral proteins often interact with multiple host proteins during virus accumulation and spread. Identities and functions of all interacting host proteins are not known. Through a yeast two-hybrid screen an Arabidopsis thaliana Qa-SNARE protein [syntaxin of plants 23 (AtSYP23)], associated with pre-vacuolar compartment and vacuolar membrane fusion activities, interacted with Tobacco mosaic virus (TMV) 126 kDa protein, associated with virus accumulation and spread. In planta, AtSYP23 and AtSYP22 each fused with mCherry, co-localized with 126 kDa protein-GFP. Additionally, A. thaliana and Nicotiana benthamiana SYP2 proteins and 126 kDa protein interacted during bimolecular fluorescence complementation analysis. Decreased TMV accumulation in Arabidopsis plants lacking SYP23 and in N. benthamiana plants subjected to virus-induced gene silencing (VIGS) of SYP2 orthologs was observed. Diminished TMV accumulation during VIGS correlated with less intercellular virus spread. The inability to eliminate virus accumulation suggests that SYP2 proteins function redundantly for TMV accumulation, as for plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nicotiana/metabolismo , Doenças das Plantas/virologia , Proteínas Qa-SNARE/metabolismo , Vírus do Mosaico do Tabaco/metabolismo , Proteínas Virais/metabolismo , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Inativação Gênica , Doenças das Plantas/genética , Ligação Proteica , Proteínas Qa-SNARE/genética , Nicotiana/genética , Nicotiana/virologia , Vírus do Mosaico do Tabaco/genética , Proteínas Virais/genética
11.
Biomed Res Int ; 2020: 7465242, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32258141

RESUMO

Recent comparisons between plant and animal viruses reveal many common principles that underlie how all viruses express their genetic material, amplify their genomes, and link virion assembly with replication. Cauliflower mosaic virus (CaMV) is not infectious for human beings. Here, we show that CaMV transactivator/viroplasmin protein (TAV) shares sequence similarity with and behaves like the human ribonuclease H1 (RNase H1) in reducing DNA/RNA hybrids detected with S9.6 antibody in HEK293T cells. We showed that TAV is clearly expressed in the cytosol and in the nuclei of transiently transfected human cells, similar to its distribution in plants. TAV also showed remarkable cytotoxic effects in U251 human glioma cells in vitro. These characteristics pave the way for future analysis on the use of the plant virus protein TAV, as an alternative to human RNAse H1 during gene therapy in human cells.


Assuntos
Caulimovirus/enzimologia , Glioma/tratamento farmacológico , Ribonuclease H , Proteínas Virais , Linhagem Celular Tumoral , Citotoxinas/química , Citotoxinas/farmacologia , Glioma/metabolismo , Glioma/patologia , Células HEK293 , Humanos , Ribonuclease H/química , Ribonuclease H/farmacologia , Proteínas Virais/química , Proteínas Virais/farmacologia
12.
Methods Mol Biol ; 1991: 33-42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31041760

RESUMO

In plants, RNA silencing is an important mechanism for gene regulation and defense that is targeted by proteins of viral pathogens effecting silencing suppression. In this chapter we describe a new assay to probe silencing suppressor activity using Agrobacterium infiltration of Nicotiana benthamiana and confocal microscopy. The key element in this assay involves the use of a reporter construct that is transiently expressed at a much lower level than free GFP, and this increases the sensitivity of detection of weak silencing suppressors such as the P6 protein of Cauliflower mosaic virus. Although initially developed for virus silencing suppressors, this technique could also prove valuable to characterize the potential for weak silencing suppressors in the effector repertoires of fungi, bacteria, nematodes, and oomycetes.


Assuntos
Agrobacterium/fisiologia , Proteínas de Ligação a DNA/metabolismo , Microscopia Confocal/métodos , Nicotiana/citologia , Nicotiana/genética , Doenças das Plantas/virologia , Interferência de RNA , Proteínas Virais/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Fluorescência Verde/metabolismo , Supressão Genética , Nicotiana/virologia , Proteínas Virais/genética
13.
Viruses ; 11(7)2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261652

RESUMO

In this paper we have characterized the lineage of two traits associated with the coat proteins (CPs) of the tombusvirids: Silencing suppression and HR elicitation in Nicotiana species. We considered that the tombusvirid CPs might collectively be considered an effector, with the CP of each CP-encoding species comprising a structural variant within the family. Thus, a phylogenetic analysis of the CP could provide insight into the evolution of a pathogen effector. The phylogeny of the CP of tombusvirids indicated that CP representatives of the family could be divided into four clades. In two separate clades the CP triggered a hypersensitive response (HR) in Nicotiana species of section Alatae but did not have silencing suppressor activity. In a third clade the CP had a silencing suppressor activity but did not have the capacity to trigger HR in Nicotiana species. In the fourth clade, the CP did not carry either function. Our analysis illustrates how structural changes that likely occurred in the CP effector of progenitors of the current genera led to either silencing suppressor activity, HR elicitation in select Nicotiana species, or neither trait.


Assuntos
Proteínas do Capsídeo/genética , Inativação Gênica , Nicotiana/genética , Doenças das Plantas/virologia , Tombusviridae/genética , Proteínas do Capsídeo/imunologia , Genoma Viral , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Nicotiana/imunologia , Nicotiana/virologia , Tombusviridae/classificação , Tombusviridae/imunologia , Tombusviridae/isolamento & purificação
14.
Methods Mol Biol ; 451: 3-19, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18370244

RESUMO

A variety of techniques have been used to examine plant viral genomes, the functions of virus-encoded proteins, plant responses induced by virus infection and plant-virus interactions. This overview considers these technologies and how they have been used to identify novel viral and plant proteins or genes involved in disease and resistance responses, as well as defense signaling. These approaches include analysis of spatial and temporal responses by plants to infection, and techniques that allow the expression of viral genes transiently or transgenically in planta, the expression of plant and foreign genes from virus vectors, the silencing of plants genes, imaging of live, infected cells, and the detection of interactions between viral proteins and plant gene products, both in planta and in various in vitro or in vivo systems. These methods and some of the discoveries made using these approaches are discussed.


Assuntos
Genoma Viral , Plantas/virologia , Fenômenos Fisiológicos Virais , Genoma de Planta , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas Virais/genética , Vírus/patogenicidade
15.
Annu Rev Virol ; 5(1): 93-111, 2018 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-30048220

RESUMO

Viruses are an important but sequence-diverse and often understudied component of the phytobiome. We succinctly review current information on how plant viruses directly affect plant health and physiology and consequently have the capacity to modulate plant interactions with their biotic and abiotic environments. Virus interactions with other biota in the phytobiome, including arthropods, fungi, and nematodes, may also impact plant health. For example, viruses interact with and modulate the interface between plants and insects. This has been extensively studied for insect-vectored plant viruses, some of which also infect their vectors. Other viruses have been shown to alter the impacts of plant-interacting phytopathogenic and nonpathogenic fungi and bacteria. Viruses that infect nematodes have also recently been discovered, but the impact of these and phage infecting soil bacteria on plant health remain largely unexplored.


Assuntos
Interações Hospedeiro-Patógeno , Insetos Vetores/virologia , Doenças das Plantas/virologia , Fenômenos Fisiológicos Vegetais , Vírus de Plantas/crescimento & desenvolvimento , Vírus de Plantas/genética , Plantas/virologia , Animais , Insetos , Plantas/parasitologia
16.
Annu Rev Phytopathol ; 56: 89-110, 2018 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-29852091

RESUMO

The first bacterial and viral avirulence ( avr) genes were cloned in 1984. Although virus and bacterial avr genes were physically isolated in the same year, the questions associated with their characterization after discovery were very different, and these differences had a profound influence on the narrative of host-pathogen interactions for the past 30 years. Bacterial avr proteins were subsequently shown to suppress host defenses, leading to their reclassification as effectors, whereas research on viral avr proteins centered on their role in the viral infection cycle rather than their effect on host defenses. Recent studies that focus on the multifunctional nature of plant virus proteins have shown that some virus proteins are capable of suppression of the same host defenses as bacterial effectors. This is exemplified by the P6 protein of Cauliflower mosaic virus (CaMV), a multifunctional plant virus protein that facilitates several steps in the infection, including modulation of host defenses. This review highlights the modular structure and multifunctional nature of CaMV P6 and illustrates its similarities to other, well-established pathogen effectors.


Assuntos
Vírus de Plantas/genética , Proteínas Virais/genética , Caulimovirus/genética , Caulimovirus/metabolismo , Interações Hospedeiro-Patógeno , Vírus de Plantas/metabolismo , Proteínas Virais/metabolismo
17.
Virology ; 523: 15-21, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30059841

RESUMO

Arabidopsis thaliana ecotype En-2 is resistant to several strains of Cauliflower mosaic virus (CaMV), including strain W260, but is susceptible to strain NY8153. Resistance in En-2 is conditioned by a single, semi-dominant gene called CAR1. We constructed several recombinant infectious clones between W260 and NY8153 and evaluated their capability to infect En-2. This analysis showed that the capacity of NY8153 to break resistance in En-2 was conditioned by mutations within the CaMV gene 1, a gene that encodes a protein dedicated to cell-to-cell movement (P1), and conversely, that P1 of W260 is responsible for eliciting the plant defense response. A previous study had shown that P6 of W260 was responsible for overcoming resistance in Arabidopsis ecotype Tsu-0 and that P6 of CaMV strain CM1841 was responsible for triggering resistance. The present study now shows that a second gene of CaMV is targeted by Arabidopsis for plant immunity.


Assuntos
Arabidopsis/genética , Caulimovirus/genética , Resistência à Doença/genética , Interações Hospedeiro-Patógeno , Imunidade Vegetal/genética , Proteínas Virais/genética , Arabidopsis/imunologia , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Caulimovirus/metabolismo , Caulimovirus/patogenicidade , Regulação da Expressão Gênica , Engenharia Genética , Genótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Recombinação Genética , Transdução de Sinais , Proteínas Virais/metabolismo
18.
Front Plant Sci ; 8: 1832, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163571

RESUMO

Similar to cells, viruses often compartmentalize specific functions such as genome replication or particle assembly. Viral compartments may contain host organelle membranes or they may be mainly composed of viral proteins. These compartments are often termed: inclusion bodies (IBs), viroplasms or viral factories. The same virus may form more than one type of IB, each with different functions, as illustrated by the plant pararetrovirus, Cauliflower mosaic virus (CaMV). CaMV forms two distinct types of IBs in infected plant cells, those composed mainly of the viral proteins P2 (which are responsible for transmission of CaMV by insect vectors) and P6 (required for viral intra-and inter-cellular infection), respectively. P6 IBs are the major focus of this review. Much of our understanding of the formation and function of P6 IBs comes from the analyses of their major protein component, P6. Over time, the interactions and functions of P6 have been gradually elucidated. Coupled with new technologies, such as fluorescence microscopy with fluorophore-tagged viral proteins, these data complement earlier work and provide a clearer picture of P6 IB formation. As the activities and interactions of the viral proteins have gradually been determined, the functions of P6 IBs have become clearer. This review integrates the current state of knowledge on the formation and function of P6 IBs to produce a coherent model for the activities mediated by these sophisticated virus-manufacturing machines.

19.
Phytopathology ; 96(5): 453-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-18944304

RESUMO

ABSTRACT A new variety of Nicotiana, N. edwardsonii var. Columbia, was evaluated for its capacity to serve as a new source for virus resistance genes. Columbia was developed from a hybridization between N. glutinosa and N. clevelandii, the same parents used for the formation of the original N. edwardsonii. However, in contrast to the original N. edwardsonii, crosses between Columbia and either of its parents are fertile. Thus, the inheritance of virus resistance genes present in N. glutinosa could be characterized by using Columbia as a bridge plant in crosses with the susceptible parent, N. clevelandii. To determine how virus resistance genes would segregate in interspecific crosses between Columbia and N. clevelandii, we followed the fate of the N gene, a single dominant gene that specifies resistance to Tobacco mosaic virus (TMV). Our genetic evidence indicated that the entire chromosome containing the N gene was introgressed into N. clevelandii to create an addition line, designated N. clevelandii line 19. Although line 19 was homozygous for resistance to TMV, it remained susceptible to Tomato bushy stunt virus (TBSV) and Cauliflower mosaic virus (CaMV) strain W260, indicating that resistance to these viruses must reside on other N. glutinosa chromosomes. We also developed a second addition line, N. clevelandii line 36, which was homozygous for resistance to TBSV. Line 36 was susceptible to TMV and CaMV strain W260, but was resistant to other tombusviruses, including Cucumber necrosis virus, Cymbidium ringspot virus, Lettuce necrotic stunt virus, and Carnation Italian ringspot virus.

20.
Mol Plant Microbe Interact ; 18(3): 212-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15782635

RESUMO

The P6 protein of Cauliflower mosaic virus (CaMV) W260 elicits a hypersensitive response (HR) on inoculated leaves of Nicotiana edwardsonii. This defense response, common to many plant pathogens, has two key characteristics, cell death within the initially infected tissues and restriction of the pathogen to this area. We present evidence that a plant gene designated CCD1, originally identified in N. bigelovii, can selectively block the cell death pathway during HR, whereas the resistance pathway against W260 remains intact. Suppression of cell death was evident not only macroscopically but also microscopically. The suppression of HR-mediated cell death was specific to CaMV, as Tobacco mosaic virus was able to elicit HR in the plants that contained CCD1. CCD1 also blocks the development of a systemic cell death symptom induced specifically by the P6 protein of W260 in N. clevelandii. Introgression of CCD1 from N. bigelovii into N. clevelandii blocked the development of systemic cell death in response to W260 infection but could not prevent systemic cell death induced by Tomato bushy stunt virus. Thus, CCD1 blocks both local and systemic cell death induced by P6 of W260 but does not act as a general suppressor of cell death induced by other plant viruses. Furthermore, experiments with CCD1 provide further evidence that cell death could be uncoupled from resistance in the HR of Nicotiana edwardsonii to CaMV W260.


Assuntos
Caulimovirus/patogenicidade , Genes de Plantas , Doenças das Plantas/genética , Doenças das Plantas/virologia , Morte Celular , Cruzamentos Genéticos , Modelos Biológicos , Fenótipo , Nicotiana/genética , Nicotiana/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA