RESUMO
Microbes play key roles in animal welfare and food safety but there is little understanding of whether microbiomes associated with livestock vary in space and time. Here we analysed the bacteria associated with the carcasses of the same breed of 28 poultry broiler flocks at different stages of processing across two climatically similar UK regions over two seasons with 16S metabarcode DNA sequencing. Numbers of taxa types did not differ by region, but did by season (P = 1.2 × 10-19), and numbers increased with factory processing, especially in summer. There was also a significant (P < 1 × 10-4) difference in the presences and abundances of taxa types by season, region and factory processing stage, and the signal for seasonal and regional differences remained highly significant on final retail products. This study therefore revealed that both season and region influence the types and abundances of taxa on retail poultry products. That poultry microbiomes differ in space and time should be considered when testing the efficacy of microbial management interventions designed to increase animal welfare and food safety: these may have differential effects on livestock depending on location and timing.
Assuntos
Microbiota , Aves Domésticas , Estações do Ano , Animais , Galinhas/microbiologia , Gado/microbiologia , Aves Domésticas/microbiologia , RNA Ribossômico 16S , Reino UnidoRESUMO
AIMS: The probiotic Bacillus amyloliquefaciens H57 increased weight gain, increased nitrogen retention and increased feed intake in ruminants when administered to the diet. This study aims to develop a better understanding of this probiotic effect by analysing changes in the rumen prokaryotic community. METHODS AND RESULTS: Sequencing the 16S rRNA gene PCR amplicons of the rumen microbiome, revealed that ewes fed H57 had a significantly different rumen microbial community structure to Control sheep. In contrast, dairy calves showed no significant differences in rumen community structure between treatment groups. In both instances, H57 was below detection in the rumen community profile and was only present at low relative abundance as determined by qPCR. CONCLUSIONS: The altered rumen microbial community in sheep likely contributes to increased weight gain through more efficient digestion of plant material. As no change occurred in the rumen community of dairy calves it is suggested that increased weight gain may be due to changes in community function rather than structure. The low relative abundance of H57 as determined by qPCR, suggests that weight gain was not directly mediated by the probiotic, but rather by influencing animal behaviour (feed consumption) and/or altering the native rumen community structure or function. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides a novel look at the rumen prokaryotic community in both sheep and dairy calves when fed H57. These findings improve our understanding for the potential rumen community involvement in H57-enabled weight gain. The study reveals that the probiotic B. amyloliquefaciens H57 is capable of benefiting ruminants without colonizing the rumen, suggesting an indirect mechanism of action.