RESUMO
We sequenced all protein-coding regions of the genome (the "exome") in two family members with combined hypolipidemia, marked by extremely low plasma levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides. These two participants were compound heterozygotes for two distinct nonsense mutations in ANGPTL3 (encoding the angiopoietin-like 3 protein). ANGPTL3 has been reported to inhibit lipoprotein lipase and endothelial lipase, thereby increasing plasma triglyceride and HDL cholesterol levels in rodents. Our finding of ANGPTL3 mutations highlights a role for the gene in LDL cholesterol metabolism in humans and shows the usefulness of exome sequencing for identification of novel genetic causes of inherited disorders. (Funded by the National Human Genome Research Institute and others.).
Assuntos
Angiopoietinas/genética , Códon sem Sentido , Hipobetalipoproteinemias/genética , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , HDL-Colesterol/sangue , HDL-Colesterol/genética , LDL-Colesterol/sangue , LDL-Colesterol/genética , Análise Mutacional de DNA , Feminino , Ligação Genética , Humanos , Masculino , LinhagemRESUMO
BACKGROUND & AIMS: Hepatic steatosis is associated with insulin resistance, but it is not clear whether increased intrahepatic triglyceride (IHTG) content causes the resistance or is a marker. Subjects with familial hypobetalipoproteinemia (FHBL) have high levels of IHTG because of a genetic defect in hepatic export of triglycerides, and provide a unique cohort to study the relationship between steatosis and insulin sensitivity. METHODS: One group of lean subjects with normal IHTG content (2.2% +/- 0.6% of liver volume) (n = 6), and 3 groups of overweight and obese subjects matched for body mass index, were studied: (1) normal IHTG content (3.3% +/- 0.5%; n = 6), (2) high IHTG content (21.4% +/- 2.6%) due to nonalcoholic fatty liver disease (NAFLD; n = 6), and (3) high IHTG content (18.1% +/- 2.2%) due to FHBL (n = 3). A hyperinsulinemic-euglycemic clamp procedure, in conjunction with glucose tracer infusion, was used to determine multiorgan insulin sensitivity. RESULTS: Hepatic insulin sensitivity (reciprocal of glucose rate of appearance [micromol x kg fat-free mass(-1) x min(-1)] x insulin [mU/L]) was greatest in the Lean group (2.0 +/- 0.4); it was the same among subjects with FHBL (0.8 +/- 0.1) and the group with normal IHTG content, matched for body mass index (0.7 +/- 0.1), but greater than the NAFLD group (0.3 +/- 0.1) (P < .01). Muscle insulin sensitivity (percent increase in glucose uptake during insulin infusion) was greatest in the Lean group (576% +/- 70%). Muscle insulin sensitivity was similar in subjects with FHBL and those with normal IHTG (319% +/- 77%, 326% +/- 27%, respectively), but greater than the NAFLD group (145% +/- 18%) (P < .01). CONCLUSIONS: Steatosis is dissociated from insulin resistance in FHBL, which suggests that increased IHTG content is a marker, not a cause, of metabolic dysfunction.
Assuntos
Hipobetalipoproteinemia Familiar por Apolipoproteína B/metabolismo , Resistência à Insulina , Fígado/metabolismo , Triglicerídeos/análise , Adulto , Idoso , Composição Corporal , Fígado Gorduroso/metabolismo , Feminino , Humanos , Fígado/química , Masculino , Pessoa de Meia-IdadeRESUMO
INTRODUCTION: Familial hypobetalipoproteinemia (FHBL) is an autosomal dominant disease characterized by abnormally low levels of apolipoprotein-B (apoB) containing lipoproteins. FHBL is caused by APOB, PCSK9 or ANGPTL3 mutations or is associated with loci located in chromosomes 10 and 3p21. However, other genes should be involved. This study describes the kinetic parameters of the apoB containing lipoproteins and sequence abnormalities of the APOB and PCSK9 genes of FHBL patients identified in a large hospital based survey. MATERIAL AND METHODS: Cases with primary or secondary causes of hypobetalipoproteinemia were identified. ApoB kinetics were measured in cases with primary forms in whom truncated forms of apoB were not present in VLDL (n = 4). A primed constant infusion of [(13)C] leucine was administered, VLDL and LDL apoB production and catabolic rates measured by a multicompartmental model and compared to normolipemic controls. In addition, these subjects had an abdominal ultrasound and direct sequencing was carried out for the PCSK9 and apoB genes. RESULTS: Three individuals had normal apoB production with increased catabolic rate; the remaining had reduced synthetic and catabolic rates. Various polymorphisms, some of them previously unreported (*), in the PCSK9 gene (R46L, A53V, I474V, D480N*, E498K*) and in the apoB gene (N441D*, Y1395C, P2712L, D2285E*, I2286V, T3540S*, T3799M*) were found in the FHBL patients. We found hepatic ultrasound changes of hepatic steatosis in only one of the four probands. CONCLUSION: FHBL without truncated apoB is a heterogeneous disease from a metabolic and a genetic perspective. Hypobetalipoproteinemia is a risk factor but not an obligate cause of steatosis.
Assuntos
Apolipoproteína B-100/genética , Fígado Gorduroso , Hipobetalipoproteinemias , Serina Endopeptidases/genética , Adulto , Isótopos de Carbono , Coleta de Dados , Fígado Gorduroso/epidemiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Genótipo , Hospitais/estatística & dados numéricos , Humanos , Hipobetalipoproteinemias/epidemiologia , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/metabolismo , Pacientes Internados/estatística & dados numéricos , Leucina/farmacocinética , Fígado/diagnóstico por imagem , Testes de Função Hepática , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Hepatopatia Gordurosa não Alcoólica , Linhagem , Polimorfismo Genético , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , UltrassonografiaRESUMO
To study the mechanism of low levels of full length and truncated apoB in individuals heterozygous for apoB truncation, a non-sense mutation was introduced in one of the three alleles of apob gene of HepG2 cells by homologous recombination. Despite very low levels of apoB-82 (1-2%) in the media, a prominent N-terminal apoB protein of 85 kDa (apoB-15) was secreted that fractionated at d>1.065 in density gradient ultracentrifugation. The mechanism of production of this short protein was studied by (35)S-methionine pulse-chase experiment. Oleate prevented presecretory degradation of apoB-100 in the cell and resulted in increased secretion of newly synthesized apoB-100 with decreases in the apoB-15, suggesting that rescue of pre-secretary intracellular degradation of apoB restricted the production and secretion of apoB-15. Further investigation on the degradation of transmembrane forms of apoB, in the presence and absence of a cysteine protease inhibitor, N-acetyl-leucyl-leucyl-norleucinal (ALLN), showed appearance of detectable levels of newly synthesized apoB-82 in the cell and the media together with increased apoB-100 secretion, and reduction in the secretion of apoB-15. Compared to ER membrane, the levels of apoB were higher in the luminal content, and presence of both oleate and ALLN had additive effect on apoB secretion. These results suggest that the presence of improper folding of apoB during translocation led to the cleavage of both apoB-100 and apoB-82 by ALLN-sensitive protease and generation of 85 kDa N-terminal fragment of apoB.
Assuntos
Apolipoproteínas B/metabolismo , Cisteína Proteases/metabolismo , Hipobetalipoproteinemia Familiar por Apolipoproteína B/metabolismo , Apolipoproteínas B/química , Apolipoproteínas B/genética , Códon sem Sentido , Inibidores de Cisteína Proteinase/farmacologia , Células Hep G2 , Humanos , Hipobetalipoproteinemia Familiar por Apolipoproteína B/genética , Leupeptinas/farmacologia , Dobramento de Proteína , Transporte ProteicoRESUMO
One significant clinical symptom of familial hypobetalipoproteinemia [FHBL] due to defects in apolipoprotein B (apoB) is steatohepatosis. However, the increased hepatic fat content in apoB-related FHBL subjects was not associated with glucose intolerance, in contrast with what is the case in the metabolic syndrome. Meanwhile, in human subjects with similar apoB truncations, degree of obesity and insulin sensitivity, their liver triglyceride (TG) contents may vary considerably, suggesting that, in addition to defective apoB, other genes may affect the magnitude of hepatic TG accumulation. We hypothesized that genetic background affects the severity of hepatic steatosis and the expression of insulin sensitivity. To test the hypotheses, mouse apoB38.9-bearing congenies were bred under high, medium and low liver triglyceride (TG) backgrounds using "speed congenics" approach. These mice were fed on regular diet for 12 weeks. Their insulin sensitivity, serum and liver lipids were assessed. The highest liver fat strain [BALB/cByJ] accumulated significantly higher TG in the liver under apoB38.9 heterozygous condition, while the lowest liver fat strain [SWR/J] had the smallest liver TG change, suggesting that the genetic backgrounds affected the hepatic TG responses to the presence of the apoB38.9 mutation. Interestingly, only the low liver fat strain [SWR/J-apoB38.9] showed significant upward shifts of both glucose tolerance test (GTT) and insulin tolerance test (ITT) curves. Neither the glucose nor the insulin tolerance curves were altered in the two cognate congenics with higher liver fat content [BALB/cByJ and C57BL/6J]. Thus, hepatic TG contents and measures of glucose metabolism were dissociated from each other. It is tempting to conclude that hepatic TG per se may not be responsible for the insulin resistance seen in fatty liver. The genetic/molecular bases for the differences between SWR/J and the other two strains with respect to their glucose metabolic responses to increases in hepatic TG contents remain to be elucidated.
Assuntos
Fígado Gorduroso/fisiopatologia , Resistência à Insulina/fisiologia , Animais , Apolipoproteína B-100/genética , Apolipoproteína B-100/fisiologia , Modelos Animais de Doenças , Fígado Gorduroso/genética , Feminino , Humanos , Resistência à Insulina/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Especificidade da Espécie , Triglicerídeos/metabolismoRESUMO
The genetic etiology of familial hypobetalipoproteinemia (FHBL) is unclear in the majority of cases. Mutations in apolipoprotein B (APOB) are the only confirmed causes of FHBL. Recently, loss-of-function mutations of PCSK9 gene have been shown to be associated with the hypocholesterolemia phenotype. Our primary goal was to confirm that mutations in PCSK9 could be another cause of FHBL. Using the sequencing approach, we found that the c.43_44insCTG variation in PCSK9, a common in-frame insertion in both African American and Caucasian populations, is associated with the hypocholesterolemia phenotype in three FHBL families. Then we tested whether this variation could be associated with lower cholesterol levels in the general population. A total of 403 subjects from a Caucasian population, in which hypobetalipoprotein (HBL) and normal groups were classified using standard criteria, were sequenced for this variation. The allele frequency of this variation in the HBL group was 0.186, but was only 0.128 in the normal lipid group. The mean plasma low-density lipoprotein (LDL)-cholesterol level in subjects heterozygous for this variant is significantly lower than that in the normal group (p<0.01). Heterozygous subjects also had higher high-density lipoprotein (HDL)-cholesterol levels (p<0.01). In general, LDL-cholesterol concentration in individuals with PCSK9 c.43_44insCTG variation was approximately 10-15 mg/dL lower than that in normal individuals. We conclude that the c.43_44insCTG variant plays a role in lowering cholesterol in the general population.
Assuntos
LDL-Colesterol/sangue , Hipobetalipoproteinemias/genética , Mutação , Serina Endopeptidases/genética , População Branca/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , HDL-Colesterol/sangue , Análise Mutacional de DNA , Feminino , Frequência do Gene , Humanos , Hipobetalipoproteinemias/diagnóstico , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Fenótipo , Pró-Proteína Convertase 9 , Pró-Proteína ConvertasesRESUMO
We report two novel APOB mutations causing short apolipoprotein B (apoB) truncations undetectable in plasma and familial hypobetalipoproteinemia (FHBL). In Family 56, a 5 bp deletion in APOB exon 7 (870_874del5) causes a frame shift, converting tyrosine to a stop codon (Y220X) and producing an apoB-5 truncation. In Family 59, a point mutation (1941G>T) in APOB exon 13 converts glutamic acid to stop codon (E578X), specifying apoB-13. A recurrent mutation in exon 26 (4432delT) produces apoB-30.9 in Family 58. In some members of these families, we observed that plasma low-density lipoprotein (LDL) cholesterol and apoB levels were unusually low even for subjects heterozygous for FHBL. To ascertain whether genetic variations in apolipoprotein E (apoE) would explain some of the variations of apoB and LDL cholesterol levels, apoE genotypes were assessed in affected subjects from a total of eight FHBL families with short apoB truncations. Heterozygous FHBL with the epsilon3/epsilon4 genotype had 10-1 5mg/dL higher plasma LDL cholesterol and apoB levels compared to subjects with the epsilon2/epsilon3 and epsilon3/epsilon3 genotypes. The apoE genotype has been reported to account for approximately 10% of the variation of LDL cholesterol in the general population. It accounted for 15-60% of the variability of plasma LDL cholesterol or apoB levels in our FHBL subjects. The physiologic bases for the greater effects of apoE in FHBL remain to be determined.
Assuntos
Apolipoproteínas B/sangue , Apolipoproteínas E/genética , Variação Genética , Hipobetalipoproteinemias/sangue , Hipobetalipoproteinemias/genética , Lipoproteínas LDL/sangue , Adulto , Feminino , Mutação da Fase de Leitura , Deleção de Genes , Genótipo , Ácido Glutâmico , Guanina , Humanos , Masculino , Linhagem , Fenótipo , Mutação Puntual , Timina , TirosinaRESUMO
Our aim was to ascertain whether fatty liver may be present in the genetic form of familial hypobetalipoproteinemia (FHBL) linked to a susceptibility locus on chromosome 3p21. Three genetic forms of FHBL exist: (a) FHBL caused by truncation-specifying mutations of apolipoprotein B (apoB), (b) FHBL linked to chr3p21, and (c) FHBL not linked either to APOB or to chr3p21. Fatty liver is common in apoB-defective FHBL. Hepatic fat contents were quantified by magnetic resonance spectroscopy in 16 subjects with 3p21-linked FHBL, 32 subjects with apoB-defective FHBL, and 39 sex- and age-matched controls. Mean liver fat of 3p21 subjects was similar to controls and approximately 60% lower than apoB-defective FHBL subjects ( P = .0012). Indices of adiposity (body mass index, waist/hip ratio) and masses of abdominal subcutaneous, retroperitoneal, and intraperitoneal adipose tissue (IPAT) were quantified by MR imaging. Mean measures of adiposity were similar in the 3 groups, suggesting that adiposity per se was not responsible for differences in liver fat. Liver fat content was positively correlated with IPAT. The intercepts of regression lines of IPAT on liver fat content were similar in controls and 3p21, but higher in apoB-defective FHBL subjects. The slopes of the lines were steepest in apoB-defective, intermediate in 3p21, and flattest in controls. Lipoprotein profiles and very low density lipoprotein-apoB100 kinetics of 3p21 and apoB-defective groups also differed. Thus, 2 genetic subtypes of FHBL also differ in several phenotypic features.
Assuntos
Cromossomos Humanos Par 3 , Fígado Gorduroso/complicações , Ligação Genética , Hipobetalipoproteinemias/complicações , Hipobetalipoproteinemias/genética , Tecido Adiposo/patologia , Adulto , Apolipoproteínas B/genética , Estudos de Casos e Controles , Feminino , Humanos , Hipobetalipoproteinemias/diagnóstico , Modelos Lineares , Fígado/patologia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , MutaçãoRESUMO
Humans and genetically engineered mice with hypobetalipoproteinemia due to truncation-producing mutations of the apolipoprotein B (apoB) gene frequently have fatty livers, because the apoB defect impairs the capacity of livers to export triglycerides (TGs). We assessed the adaptation of hepatic lipid metabolism in our apoB-38.9-bearing mice. Hepatic TG contents were 2- and 4-fold higher in heterozygous and homozygous mice, respectively, compared with wild-type mice. Respective in vivo hepatic fatty acid synthetic rates were reduced to 40% and 15% of the wild-type rate. Hepatic mRNAs for sterol regulatory element-binding protein (SREBP)-1c, fatty acid synthase (FAS), and stearoyl coenzyme A desaturase-1 were coordinately decreased. FAS and SREBP-1c mRNA levels were strongly and positively correlated with each other and inversely correlated with hepatic TGs, suggesting that impaired TG export is a potent inhibitor of fatty acid synthesis. In contrast, levels of plasma beta-hydroxybutyrate and of hepatic carnitine palmitoyl transferase and peroxisome proliferator-activated receptor-alpha mRNAs were not altered, implying that beta-oxidation was not affected. Fasting followed by refeeding increased hepatic fatty acid synthesis 56-fold over fasting in normal and heterozygous mice but only 24-fold in homozygous mice. Parallel changes occurred in FAS and SREBP-1c mRNAs. Thus, impairment of very low density lipoprotein export downregulates hepatic fatty acid synthesis, but the adaptation is incomplete, resulting in fatty livers. The signals mediating suppression of FAS and SREBP-1c levels remain to be identified.
Assuntos
Apolipoproteínas B/genética , Ácidos Graxos/biossíntese , Hipobetalipoproteinemias/metabolismo , Fígado/metabolismo , Fatores de Transcrição , Adaptação Fisiológica , Animais , Proteínas Estimuladoras de Ligação a CCAAT/biossíntese , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Jejum , Ácido Graxo Sintases/biossíntese , Ácido Graxo Sintases/genética , Feminino , Marcação de Genes , Hipobetalipoproteinemias/genética , Cinética , Masculino , Camundongos , Mutação , RNA Mensageiro/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1 , Triglicerídeos/metabolismoRESUMO
OBJECTIVE: Carboxyl terminal truncation of apolipoprotein (apo)B-100 and apoB-48 impairs their capacity for triglyceride transport, but the ability of the resultant truncated apoB to transport cholesterol and to support atherosclerosis has not been adequately studied. The atherogenicity of apoB-38.9 was determined in this study by using our apoB-38.9-only (Apob38.9/38.9) mice. METHODS AND RESULTS: ApoB-38.9-lipoproteins (Lp-B38.9) circulate at very low levels in Apob38.9/38.9 mice as small LDLs or HDLs. Disruption of apoE gene in these mice caused accumulation of large amounts of betaVLDL-like LpB-38.9 in plasma. These betaVLDL particles were more enriched with cholesteryl esters but poor in triglycerides compared with the apoB-48-betaVLDL of the apoB-wild-type/apoE-null (Apob+/+/Apoe-/-) mice. Likewise, apoB-38.9-VLDL secreted by cultured Apob38.9/38.9 mouse hepatocytes also had higher ratios of total cholesterol to triglycerides than apoB-48-VLDL secreted by the apoB-48-only hepatocytes. Thus, despite its impaired triglyceride-transporting capacity, apoB-38.9 has a relatively intact capacity for cholesterol transport. Spontaneous aortic atherosclerotic lesions were examined in apoB-38.9-only/apoE-null (Apob38.9/38.9/Apoe-/-) mice at ages 9 and 13 months. Extensive lesions were found in the Apob38.9/38.9/Apoe-/- mice as well as in their Apob+/38.9/Apoe-/- and Apob+/+/Apoe-/- littermates. CONCLUSIONS: Deleting the C-terminal 20% from apoB-48 does not impair its ability to transport cholesterol and to support atherosclerosis, thus narrowing the "atherogenic region" of apoB.
Assuntos
Apolipoproteínas B/química , Arteriosclerose/metabolismo , Colesterol/metabolismo , Animais , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Apolipoproteínas B/fisiologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Arteriosclerose/patologia , Células Cultivadas/metabolismo , VLDL-Colesterol/metabolismo , Cruzamentos Genéticos , Modelos Animais de Doenças , Hepatócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Deleção de Sequência , Organismos Livres de Patógenos Específicos , Relação Estrutura-AtividadeRESUMO
Familial hypobetalipoproteinemia (FHBL) is a genetic disorder characterized by low levels of apoB-100 and LDL cholesterol. Truncation-producing mutations of apoB (chromosome 2) are among several potential causes of FHBL in patients. Ten new families with FHBL linked to chromosome 2 were identified. In Family 8, a 4432delT in exon 26 produces a frame-shift and a premature stop codon predicted to produce a truncated apoB-30.9. Even though this truncation is just 10 amino acid shorter than the well-documented apoB-31, which is readily detectable in plasma, apoB-30.9 is undetectable. Most truncations shorter than apoB-30 are not detectable in plasma. In Family 34, an acceptor splicing mutation at position -1 of exon 14 changes the acceptor splice site AG to AA. Two families (Family 50 and 52) had mutations (apoB-9 and apoB-29) reported previously. In Family 98, a novel point mutation in exon 26 (11163T>G) causes a premature stop codon, and produces a truncated apoB-80.5 readily detectable in plasma. Sequencing of the ApoB gene in families 1, 5, 18, 58, and 59 did not reveal mutations.
Assuntos
Apolipoproteínas B/sangue , Apolipoproteínas B/genética , Hipobetalipoproteinemias/sangue , Hipobetalipoproteinemias/genética , Mutação/genética , Adulto , Idoso , Processamento Alternativo/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 2/genética , Ligação Genética/genética , Marcadores Genéticos/genética , Humanos , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Deleção de SequênciaRESUMO
Primary hypobetalipoproteinemia (pHBL) is characterized by plasma cholesterol levels <5th percentile of a population distribution. Plasma non-cholesterol sterols (NCS) are markers of cholesterol liver synthesis and intestinal absorption. Plasma NCS were measured in 111 pHBL subjects, 108 low cholesterol (LC) and 253 normal cholesterol (NC) controls to gain information on cholesterol metabolism in pHBL, and to assess whether NCS measurements may aid in distinguishing pHBL from LC controls. pHBL subjects compared with LC controls were characterized by increased cholesterol absorption (campesterol/TC) while the synthesis (lathosterol/TC) was not increased. The analysis of pHBL subjects divided by gene defect showed a high campesterol/TC ratio in familial HBL (FHBL) carriers of apolipoproteinB (ApoB) truncations longer than ApoB48 and in FHBL without known gene defect ("not linked"). One not linked kindred was characterized by an increase of the 7-dehydrocholesterol/latho ratio. In a discriminant analysis plasma NCS did not improve the power of TC levels to distinguish FHBL from LC controls. In conclusion, increased cholesterol absorption was found in FHBL subjects harbouring truncations of ApoB>ApoB48, and FHBL harbouring as yet unknown molecular defects. Not linked FHBL kindred are not homogeneous in terms of plasma NCS levels. NCS cannot replace genetic HBL analysis.
Assuntos
Hipobetalipoproteinemias/sangue , Esteróis/metabolismo , Absorção , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Colesterol/análogos & derivados , Colesterol/sangue , Colesterol/química , Saúde da Família , Humanos , Mucosa Intestinal/metabolismo , Pessoa de Meia-Idade , Modelos Genéticos , Mutação , Fenótipo , Fitosteróis/sangueRESUMO
Patients with diabetes or metabolic syndrome frequently have higher triglycerides, lower high-density lipoprotein (HDL) cholesterol, and more particles containing apolipoprotein B (ApoB); this combination contributes significantly to their cardiovascular risk. Optimal management of dyslipidemia and increased atherosclerotic risk requires a fundamental understanding of diabetic dyslipidemia, the clinical evidence for different interventional strategies, and the potential benefit of achieving therapeutic targets. For this review, we considered guidelines, recent reviews, and clinical trial results. The features of dyslipidemia in type 2 diabetes and the metabolic syndrome are linked metabolically and are related to central adiposity and insulin resistance. Levels of ApoB and HDL cholesterol are particularly important markers of risk. Guidelines broadly agree that low-density lipoprotein (LDL) cholesterol should be reduced below population average levels. Additional or secondary strategies in patients with diabetes or the metabolic syndrome are to decrease non-HDL cholesterol, ApoB and/or LDL particle concentration, to increase HDL cholesterol, and to reduce triglycerides. Lifestyle changes and statins are the bedrock of treatment, although second-line treatment using fibrates or niacin will likely benefit many patients with residual risk. Ezetimibe, too, has a favorable effect on lipid profile and inflammatory biomarkers of risk. Dyslipidemia in type 2 diabetes and metabolic syndrome has a distinct profile, suggesting the need for a tailored therapy that targets the key features of lowered HDL cholesterol and raised triglycerides, in addition to the primary antiatherogenic strategy of lowering ApoB-containing lipoproteins, such as LDL. With the prominent failure of some recent intervention trials, new therapeutic strategies-particularly safe and effective means to raise HDL-are needed to manage dyslipidemia in this high-risk population.
RESUMO
High plasma apolipoprotein B (apoB) and LDL cholesterol levels increase cardiovascular disease risk. These highly correlated measures may be partially controlled by common genetic polymorphisms. To identify chromosomal regions that contain genes causing low plasma levels of one or both parameters in Caucasian families ascertained for familial hypobetalipoproteinemia (FHBL), we conducted a whole-genome scan using 443 microsatellite markers typed in nine multigenerational families with at least two members with FHBL. Both variance components and regression-based linkage methods were used to identify regions of interest. Common linkage regions were identified for both measures on chromosomes 10q25.1-10q26.11 [maximum log of the odds (LOD) = 4.2 for LDL and 3.5 for apoB] and 6q24.3 (maximum LOD = 1.46 for LDL and 1.84 for apoB). There was also evidence for linkage to apoB on chromosome 13q13.2 (LOD = 1.97) and to LDL on chromosome 3p14.1 at 94 centimorgan (LOD = 1.52). Bivariate linkage analysis provided further evidence for loci contributing to both traits (6q24.3, LOD = 1.43; 10q25.1, LOD = 1.74). We evaluated single nucleotide polymorphisms (SNPs) in genes within our linkage regions to identify variants associated with apoB or LDL levels. The most significant finding was for rs2277205 in the 5' untranslated region of acyl-coenzyme A dehydrogenase short/branched chain and LDL (P = 10(-7)). Three additional SNPs were associated with apoB and/or LDL (P < 0.01). Although only the linkage signal on chromosome 10 reached genome-wide statistical significance, there are likely multiple chromosomal regions with variants that contribute to low levels of apoB and LDL and that may protect against coronary heart disease.
Assuntos
Apolipoproteínas B/genética , LDL-Colesterol/genética , Cromossomos Humanos Par 10 , Locos de Características Quantitativas , População Branca/genética , Apolipoproteínas B/sangue , Apolipoproteínas B/metabolismo , LDL-Colesterol/sangue , LDL-Colesterol/metabolismo , Ligação Genética , Humanos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Familial hypobetalipoproteinemia (FHBL) due to truncation-specifying mutations of apolipoprotein B (apoB), which impair hepatic lipid export in very low-density lipoprotein (VLDL) particles, is associated with fatty liver. In an FHBL-like mouse with the apoB38.9 mutation, fatty liver develops despite reduced hepatic fatty acid synthesis. However, hepatic cholesterol contents in apoB38.9 mice are normal. We found that cholesterogenic enzymes (3-hydroxy-3-methylglutaryl-coenzyme A reductase, sterol-C5-desaturase, and 7-dehydrocholesterol reductase) were consistently downregulated in two separate expression-profiling experiments using a total of 19 mice (n = 7 each for apob(+/+) and apob(+/38.9), and n = 5 for apob(38.9/38.9)) and Affymetrix Mu74Av2 GeneChip microarrays. Results were confirmed by real-time PCR. Cholesterol synthesis rates in cultured hepatocytes were reduced by 35% and 25% in apob(38.9/38.9) and apob(+/38.9), respectively, vs. apob(+/+). Hepatic triglycerides and lipid peroxides, the latter measured by thiobarbituric acid-reactive substances (TBARS) assay, were significantly elevated in apob(+/38.9) (117%) and apob(38.9/38.9) (132%) vs. apob(+/+) (100%), as were mRNA expression of the microsomal lipid peroxidizing enzymes Cyp4A10 and Cyp4A14. Hepatic lipid peroxide levels were positively correlated with triglyceride contents (r = 0.601, P = 0.0065). Thus the fatty liver due to a VLDL secretion defect is associated with insufficient adaptation to triglyceride accumulation and with increased lipid peroxidation. In contrast, apoB38.9 mice effectively maintain cholesterol homeostasis in the liver, at least in part, by reducing hepatic cholesterol synthesis.
Assuntos
Apolipoproteínas B/metabolismo , Colesterol/metabolismo , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Hipobetalipoproteinemias/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Animais , Apolipoproteína B-100 , Apolipoproteínas B/genética , Células Cultivadas , Fígado Gorduroso/complicações , Marcação de Genes , Hipobetalipoproteinemias/complicações , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , RatosRESUMO
To assess whether genetic factor(s) determine liver triglyceride (TG) levels, a 10-mouse strain survey of liver TG contents was performed. Hepatic TG contents were highest in BALB/cByJ, medium in C57BL/6J, and lowest in SWR/J in both genders. Ninety and seventy-six percent of variance in hepatic TG in males and females, respectively, was due to strain (genetic) effects. To understand the physiological/biochemical basis for differences in hepatic TG among the three strains, studies were performed in males of the BALB/cByJ, C57BL/6J, and SWR/J strains. In vivo hepatic fatty acid (FA) synthesis rates and hepatic TG secretion rates ranked BALB/cByJ approximately C57BL/6J > SWR/J. Hepatic 1-(14)C-labeled palmitate oxidation rates and plasma beta-hydroxybutyrate concentrations ranked in reverse order: SWR/J > BALB/cByJ approximately C57BL/6J. After 14 h of fasting, plasma-free FA and hepatic TG contents rose most in BALB/cByJ and least in SWR/J. beta-Hydroxybutyrate concentrations rose least in BALB/cByJ and most in SWR/J. Adaptation to fasting was most effective in SWR/J and least in BALB/cByJ, perhaps because BALB/cByJ are known to be deficient in SCAD, a short-chain FA oxidizing enzyme. To assess the role of insulin action, glucose tolerance test (GTT) was performed. GTT-glucose levels ranked C57BL/6J > BALB/cByJ approximately SWR/J. Thus strain-dependent (genetic) factors play a major role in setting hepatic TG levels in mice. Processes such as FA production and hepatic export in VLDL on the one hand and FA oxidation on the other, explain some of the strain-related differences in hepatic TG contents. Additional factor(s) in the development of fatty liver in BALB/cByJ remain to be demonstrated.
Assuntos
Fígado Gorduroso/fisiopatologia , Lipoproteínas VLDL/metabolismo , Fígado/química , Triglicerídeos/análise , Triglicerídeos/genética , Animais , Ácidos Graxos/metabolismo , Fígado Gorduroso/veterinária , Feminino , Lipoproteínas VLDL/análise , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oxirredução , Fatores SexuaisRESUMO
Fatty liver is prevalent in apolipoprotein B (apoB)-defective familial hypobetalipoproteinemia (FHBL). Similar to humans, mouse models of FHBL produced by gene targeting (apob(+/38.9)) manifest low plasma cholesterol and increased hepatic triglycerides (TG) even on a chow diet due to impaired hepatic VLDL-TG secretive capacity. Because apoB truncations shorter than apoB48 are expressed in the intestine, we examined whether FHBL mice may have limited capacity for intestinal dietary TG absorption. In addition, we investigated whether FHBL mice are more susceptible to diet-induced hepatic TG accumulation. Fat absorption capacity was impaired in apoB38.9 mice in a gene dose-dependent manner. Relative fractional fat absorption coefficients for apob(+/+), apob(+/38.9), and apob(38.9/38.9) were 1.00, 0.96, and 0.71, respectively. To raise hepatic TG, we fed high-fat (HF) and low-fat (LF) pellets. Hepatic TG level was observed in rank order: HF > LF > chow. On both LF and HF, liver TG level was higher in the apob(+/38.9) than in apob(+/+). Hepatic TG secretion remained impaired in the apob(+/38.9) on the HF diet. Thus the FHBL mice are more susceptible to diet-induced fatty liver despite relatively reduced intestinal TG absorption capacity on a HF diet.
Assuntos
Apolipoproteínas B/genética , Gorduras na Dieta/farmacocinética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Absorção Intestinal/fisiologia , Animais , Peso Corporal , Modelos Animais de Doenças , Fígado Gorduroso/fisiopatologia , Feminino , Heterozigoto , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Estearoil-CoA Dessaturase/genética , Triglicerídeos/metabolismo , Receptor fas/genéticaRESUMO
We review the genetics and pathophysiology of familial hypobetalipoproteinemia (FHBL), a mildly symptomatic genetically heterogeneous autosomal trait. The minority of human FHBL is caused by truncation-specifying mutations of the APOB gene on chromosome 2. In seven families, linkage to chromosome 2 is absent, linkage is instead to chromosome 3 (3p21). In others, linkage is absent to both APOB and to 3p21. Apolipoprotein B-100 (apoB-100) levels are approximately 25% of normal, instead of the 50% expected based on the presence of one normal allele due to reduced rates of production. The presence of the truncating mutation seems to have a "dominant recessive" effect on apoB-100 secretion. Concentrations of apoB truncations in plasma differ by truncation but average at approximately 10% of normal levels. Lipoproteins bearing truncated forms of apoB are cleared more rapidly than apoB-100 particles. In contrast with apoB-100 particles cleared primarily in liver via the LDL receptor, most apoB truncation particles are cleared in renal proximal tubular cells via megalin. Since apoB defects cause a dysfunctional VLDL-triglyceride transport system, livers accumulate fat. Hepatic synthesis of fatty acids is reduced in compensation. Informational lacunae remain about genes affecting fat accumulation in liver, and the modulation of liver fat in the presence apoB truncation defects.