Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Behav Nutr Phys Act ; 20(1): 116, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752497

RESUMO

BACKGROUND: Previous cross-sectional and longitudinal observational studies revealed positive relationships between contextual built environment components and walking behavior. Due to severe restrictions during COVID-19 pandemic lockdowns, physical activity was primarily performed within the immediate living area. Using this unique opportunity, we evaluated whether built environment components were associated with the magnitude of change in walking activity in adults during COVID-19 restrictions. METHODS: Data on self-reported demographic characteristics and walking behaviour were extracted from the prospective longitudinal Lifelines Cohort Study in the Netherlands of participants ≥ 18 years. For our analyses, we made use of the data acquired between 2014-2017 (n = 100,285). A fifth of the participants completed the questionnaires during COVID-19 restrictive policies in July 2021 (n = 20,806). Seven spatial components were calculated for a 500m and 1650m Euclidean buffer per postal code area in GIS: population density, retail and service destination density, land use mix, street connectivity, green space density, sidewalk density, and public transport stops. Additionally, the walkability index (WI) of these seven components was calculated. Using multivariable linear regression analyses, we analyzed the association between the WI (and separate components) and the change in leisure walking minutes/week. Included demographic variables were age, gender, BMI, education, net income, occupation status, household composition and the season in which the questionnaire was filled in. RESULTS: The average leisure walking time strongly increased by 127 min/week upon COVID-19 restrictions. All seven spatial components of the WI were significantly associated with an increase in leisure walking time; a 10% higher score in the individual spatial component was associated with 5 to 8 more minutes of leisure walking/week. Green space density at the 500m Euclidean buffer and side-walk density at the 1650m Euclidean buffer were associated with the highest increase in leisure walking time/week. Subgroup analysis revealed that the built environment showed its strongest impact on leisure walking time in participants not engaging in leisure walking before the COVID-19 pandemic, compared to participants who already engaged in leisure walking before the COVID-19 pandemic. CONCLUSIONS: These results provide strong evidence that the built environment, corrected for individual-level characteristics, directly links to changes observed in leisure walking time during COVID-19 restrictions. Since this relation was strongest in those who did not engage in leisure walking before the COVID-19 pandemic, our results encourage new perspectives in health promotion and urban planning.


Assuntos
COVID-19 , Pandemias , Adulto , Humanos , Estudos de Coortes , Estudos Longitudinais , Estudos Prospectivos , Estudos Transversais , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Caminhada
2.
BMC Public Health ; 22(1): 147, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062927

RESUMO

BACKGROUND: Identification of characteristics of individuals that are related to decreases in physical activity (PA) levels during lockdown is needed to develop targeted-interventions. This study aims to evaluate changes in domain-specific (i.e. leisure time, transportation, occupational, and household) and total PA due to the Dutch COVID-19 lockdown, which started on March 15 2020. Furthermore, we aim to identify demographic, health-related, and psychological correlates of these changes. METHODS: Individuals who participated in the Nijmegen Exercise Study during 2017-2019 were invited to this study, which was conducted between April 16 and May 12 2020. Participant characteristics (i.e. age, sex, body mass index (BMI), marital status, education, household composition, and occupation status), living environment (i.e. housing type and degree of urbanization), psychological characteristics (i.e. resilience, outcome expectations, vitality, and mental health), and medical history were collected via an online questionnaire. Short Questionnaire to Assess Health-enhancing physical activity was used to assess PA behavior before and during lockdown. Wilcoxon signed-rank test was used to compare PA levels, in metabolic equivalent of task (MET)-minutes per week (min/wk), before and during lockdown. Multivariable linear regression analyses were performed to examine correlates of PA changes. RESULTS: 4033 participants (57% male; 59 ± 13 years) were included. PA decreased significantly during lockdown with mean ± SD changes of 393 ± 2735 MET-min/wk for total, 133 ± 785 MET-min/wk for transportation, 137 ± 1469 MET-min/wk for occupation, and 136 ± 1942 MET-min/wk for leisure time PA. Household PA did not change significantly. Unemployment, COVID-19-related occupational changes, higher BMI, and living in an apartment or semi-detached/terraced house were significantly related to larger decreases in total and domain-specific PA. Higher vitality was related to smaller decreases in total and domain-specific PA. Higher age was significantly associated with a larger decrease in leisure time PA. Lower education was associated with smaller decreases in transportation and occupational PA compared to higher education. CONCLUSION: PA levels significantly reduced during lockdown compared to before lockdown. Declines were observed during transportation and occupation, but were not compensated by an increase in leisure time PA. We identified subgroups that were more susceptible to reductions in domain-specific or total PA levels and should therefore be encouraged to increase their PA levels during lockdown.


Assuntos
COVID-19 , Estudos de Coortes , Controle de Doenças Transmissíveis , Exercício Físico , Feminino , Humanos , Masculino , Políticas , SARS-CoV-2
3.
Nutrients ; 15(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36678213

RESUMO

Background: Adequate animal-based protein intake can attenuate exercise induced-muscle damage (EIMD) in young adults. We examined the effects of 13 days plant-based (pea) protein supplementation compared to whey protein and placebo on EIMD in active older adults. Methods: 47 Physically active older adults (60+ years) were randomly allocated to the following groups: (I) whey protein (25 g/day), (II) pea protein (25 g/day) or (III) iso-caloric placebo. Blood concentrations of creatine kinase (CK) and lactate dehydrogenase (LDH), and skeletal muscle mass, muscle strength and muscle soreness were measured prior to and 24 h, 48 h and 72 h after a long-distance walking bout (20−30 km). Results: Participants walked 20−30 km and 2 dropped out, leaving n = 15 per subgroup. The whey group showed a significant attenuation of the increase in EIMD at 24 h post-exercise compared to the pea and placebo group (CK concentration: 175 ± 90 versus 300 ± 309 versus 330 ± 165, p = p < 0.001). No differences in LDH levels, muscle strength, skeletal muscle mass and muscle soreness were observed across groups (all p-values > 0.05). Conclusions: Thirteen days of pea protein supplementation (25 g/day) does not attenuate EIMD in older adults following a single bout of prolonged walking exercise, whereas the whey protein supplementation group showed significantly lower post-exercise CK concentrations.


Assuntos
Músculo Esquelético , Mialgia , Proteínas do Soro do Leite , Pessoa de Meia-Idade , Creatina Quinase , Suplementos Nutricionais , Músculo Esquelético/metabolismo , Mialgia/prevenção & controle , Caminhada , Proteínas do Soro do Leite/administração & dosagem , Humanos , Pisum sativum , Proteínas de Plantas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA