RESUMO
Alphaviruses are RNA viruses that represent emerging public health threats. To identify protective antibodies, we immunized macaques with a mixture of western, eastern, and Venezuelan equine encephalitis virus-like particles (VLPs), a regimen that protects against aerosol challenge with all three viruses. Single- and triple-virus-specific antibodies were isolated, and we identified 21 unique binding groups. Cryo-EM structures revealed that broad VLP binding inversely correlated with sequence and conformational variability. One triple-specific antibody, SKT05, bound proximal to the fusion peptide and neutralized all three Env-pseudotyped encephalitic alphaviruses by using different symmetry elements for recognition across VLPs. Neutralization in other assays (e.g., chimeric Sindbis virus) yielded variable results. SKT05 bound backbone atoms of sequence-diverse residues, enabling broad recognition despite sequence variability; accordingly, SKT05 protected mice against Venezuelan equine encephalitis virus, chikungunya virus, and Ross River virus challenges. Thus, a single vaccine-elicited antibody can protect in vivo against a broad range of alphaviruses.
Assuntos
Alphavirus , Vírus da Encefalite Equina Venezuelana , Vacinas Virais , Animais , Camundongos , Vírus da Encefalite Equina Venezuelana/genética , Anticorpos Antivirais , MacacaRESUMO
Antibodies with ontogenies from VH1-2 or VH1-46-germline genes dominate the broadly neutralizing response against the CD4-binding site (CD4bs) on HIV-1. Here, we define with longitudinal sampling from time-of-infection the development of a VH1-46-derived antibody lineage that matured to neutralize 90% of HIV-1 isolates. Structures of lineage antibodies CH235 (week 41 from time-of-infection, 18% breadth), CH235.9 (week 152, 77%), and CH235.12 (week 323, 90%) demonstrated the maturing epitope to focus on the conformationally invariant portion of the CD4bs. Similarities between CH235 lineage and five unrelated CD4bs lineages in epitope focusing, length-of-time to develop breadth, and extraordinary level of somatic hypermutation suggested commonalities in maturation among all CD4bs antibodies. Fortunately, the required CH235-lineage hypermutation appeared substantially guided by the intrinsic mutability of the VH1-46 gene, which closely resembled VH1-2. We integrated our CH235-lineage findings with a second broadly neutralizing lineage and HIV-1 co-evolution to suggest a vaccination strategy for inducing both lineages.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Linfócitos B/imunologia , Anticorpos Anti-HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de SequênciaRESUMO
An effective vaccine for respiratory syncytial virus (RSV) is an unrealized public health goal. A single dose of the prefusion-stabilized fusion (F) glycoprotein subunit vaccine (DS-Cav1) substantially increases serum-neutralizing activity in healthy adults. We sought to determine whether DS-Cav1 vaccination induces a repertoire mirroring the pre-existing diversity from natural infection or whether antibody lineages targeting specific epitopes predominate. We evaluated RSV F-specific B cell responses before and after vaccination in six participants using complementary B cell sequencing methodologies and identified 555 clonal lineages. DS-Cav1-induced lineages recognized the prefusion conformation of F (pre-F) and were genetically diverse. Expressed antibodies recognized all six antigenic sites on the pre-F trimer. We identified 34 public clonotypes, and structural analysis of two antibodies from a predominant clonotype revealed a common mode of recognition. Thus, vaccination with DS-Cav1 generates a diverse polyclonal response targeting the antigenic sites on pre-F, supporting the development and advanced testing of pre-F-based vaccines against RSV.
Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Criança , Pré-Escolar , Estudos de Coortes , Epitopos/imunologia , Feminino , Células HEK293 , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Vacinação/métodos , Proteínas Virais de Fusão/imunologia , Adulto JovemRESUMO
HIV-1-neutralizing antibodies develop in most HIV-1-infected individuals, although highly effective antibodies are generally observed only after years of chronic infection. Here, we characterize the rate of maturation and extent of diversity for the lineage that produced the broadly neutralizing antibody VRC01 through longitudinal sampling of peripheral B cell transcripts over 15 years and co-crystal structures of lineage members. Next-generation sequencing identified VRC01-lineage transcripts, which encompassed diverse antibodies organized into distinct phylogenetic clades. Prevalent clades maintained characteristic features of antigen recognition, though each evolved binding loops and disulfides that formed distinct recognition surfaces. Over the course of the study period, VRC01-lineage clades showed continuous evolution, with rates of â¼2 substitutions per 100 nucleotides per year, comparable to that of HIV-1 evolution. This high rate of antibody evolution provides a mechanism by which antibody lineages can achieve extraordinary diversity and, over years of chronic infection, develop effective HIV-1 neutralization.
Assuntos
Anticorpos Neutralizantes/genética , Linfócitos B/imunologia , Evolução Molecular , Infecções por HIV/imunologia , HIV-1/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Diversidade de Anticorpos , Doença Crônica , Humanos , Leucócitos Mononucleares , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de SequênciaRESUMO
Vaccine-induced memory B cell responses to evolving viruses like influenza A involve activation of pre-existing immunity and generation of new responses. To define the contribution of these two types of responses, we analyzed the response to H7N9 vaccination in H7N9-naive adults. We performed comprehensive comparisons at the single-cell level of the kinetics, Ig repertoire, and activation phenotype of established pre-existing memory B cells recognizing conserved epitopes and the newly generated memory B cells directed toward H7 strain-specific epitopes. The recall response to conserved epitopes on H7 HA involved a transient expansion of memory B cells with little observed adaptation. However, the B cell response to newly encountered epitopes was phenotypically distinct and generated a sustained memory population that evolved and affinity matured months after vaccination. These findings establish clear differences between newly generated and pre-existing memory B cells, highlighting the challenges in achieving long-lasting, broad protection against an ever-evolving virus.
Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Adulto , Anticorpos Antivirais/metabolismo , Formação de Anticorpos , Células Cultivadas , Epitopos/imunologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Memória Imunológica , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Fenótipo , Receptores de Antígenos de Linfócitos B/genética , Análise de Célula Única , Vacinação , Adulto JovemRESUMO
HIV- and SIV-envelope (Env) trimers are both extensively glycosylated, and antibodies identified to date have been unable to fully neutralize SIVmac239. Here, we report the isolation, structure, and glycan interactions of antibody ITS90.03, a monoclonal antibody that completely neutralized the highly neutralization-resistant isolate, SIVmac239. The co-crystal structure of a fully glycosylated SIVmac239-gp120 core in complex with rhesus CD4 and the antigen-binding fragment of ITS90.03 at 2.5-Å resolution revealed that ITS90 recognized an epitope comprised of 45% glycan. SIV-gp120 core, rhesus CD4, and their complex could each be aligned structurally to their human counterparts. The structure revealed that glycans masked most of the SIV Env protein surface, with ITS90 targeting a glycan hole, which is occupied in â¼83% of SIV strains by glycan N238. Overall, the SIV glycan shield appears to functionally resemble its HIV counterpart in coverage of spike, shielding from antibody, and modulation of receptor accessibility.
Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Infecções por HIV/imunologia , HIV/fisiologia , Polissacarídeos/química , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/metabolismo , Antígenos CD4/metabolismo , Células Cultivadas , Cristalização , Cristalografia por Raios X , Modelos Animais de Doenças , Glicosilação , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Macaca mulatta , Glicoproteínas de Membrana/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Proteínas do Envelope Viral/metabolismoRESUMO
Lineage-based vaccine design is an attractive approach for eliciting broadly neutralizing antibodies (bNAbs) against HIV-1. However, most bNAb lineages studied to date have features indicative of unusual recombination and/or development. From an individual in the prospective RV217 cohort, we identified three lineages of bNAbs targeting the membrane-proximal external region (MPER) of the HIV-1 envelope. Antibodies RV217-VRC42.01, -VRC43.01, and -VRC46.01 used distinct modes of recognition and neutralized 96%, 62%, and 30%, respectively, of a 208-strain virus panel. All three lineages had modest levels of somatic hypermutation and normal antibody-loop lengths and were initiated by the founder virus MPER. The broadest lineage, VRC42, was similar to the known bNAb 4E10. A multimeric immunogen based on the founder MPER activated B cells bearing the unmutated common ancestor of VRC42, with modest maturation of early VRC42 intermediates imparting neutralization breadth. These features suggest that VRC42 may be a promising template for lineage-based vaccine design.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Vacinas contra a AIDS/imunologia , Sequência de Aminoácidos , Linfócitos B/imunologia , Linhagem Celular , Células HEK293 , Infecções por HIV/imunologia , Humanos , Leucócitos Mononucleares , Estudos LongitudinaisRESUMO
Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permitted it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis.
Assuntos
Anticorpos Neutralizantes/imunologia , Sítios de Ligação de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Especificidade de Anticorpos , Linfócitos T CD4-Positivos/imunologia , Separação Celular , Proteína gp120 do Envelope de HIV/imunologia , HumanosRESUMO
Both SIV and SHIV are powerful tools for evaluating antibody-mediated prevention and treatment of HIV-1. However, owing to a lack of rhesus-derived SIV broadly neutralizing antibodies (bnAbs), testing of bnAbs for HIV-1 prevention or treatment has thus far been performed exclusively in the SHIV NHP model using bnAbs from HIV-1-infected individuals. Here we describe the isolation and characterization of multiple rhesus-derived SIV bnAbs capable of neutralizing most isolates of SIV. Eight antibodies belonging to two clonal families, ITS102 and ITS103, which target unique epitopes in the CD4 binding site (CD4bs) region, were found to be broadly neutralizing and together neutralized all SIV strains tested. A rare feature of these bnAbs and two additional antibody families, ITS92 and ITS101, which mediate strain-specific neutralizing activity against SIV from sooty mangabeys (SIVsm), was their ability to achieve near complete (i.e. 100%) neutralization of moderately and highly neutralization-resistant SIV. Overall, these newly identified SIV bnAbs highlight the potential for evaluating HIV-1 prophylactic and therapeutic interventions using fully simian, rhesus-derived bnAbs in the SIV NHP model, thereby circumventing issues related to rapid antibody clearance of human-derived antibodies, Fc mismatch and limited genetic diversity of SHIV compared to SIV.
Assuntos
Infecções por HIV , HIV-1 , Vírus da Imunodeficiência Símia , Animais , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Macaca mulattaRESUMO
Antibodies of the VRC01 class neutralize HIV-1, arise in diverse HIV-1-infected donors, and are potential templates for an effective HIV-1 vaccine. However, the stochastic processes that generate repertoires in each individual of >10(12) antibodies make elicitation of specific antibodies uncertain. Here we determine the ontogeny of the VRC01 class by crystallography and next-generation sequencing. Despite antibody-sequence differences exceeding 50%, antibody-gp120 cocrystal structures reveal VRC01-class recognition to be remarkably similar. B cell transcripts indicate that VRC01-class antibodies require few specific genetic elements, suggesting that naive-B cells with VRC01-class features are generated regularly by recombination. Virtually all of these fail to mature, however, with only a few-likely one-ancestor B cell expanding to form a VRC01-class lineage in each donor. Developmental similarities in multiple donors thus reveal the generation of VRC01-class antibodies to be reproducible in principle, thereby providing a framework for attempts to elicit similar antibodies in the general population.
Assuntos
Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Sequência de Bases , Anticorpos Amplamente Neutralizantes , Cristalografia por Raios X , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Humanos , Leucócitos Mononucleares , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
Numerous antibodies have been identified from HIV-1-infected donors that neutralize diverse strains of HIV-1. These antibodies may provide the basis for a B cell-mediated HIV-1 vaccine. However, it has been unclear how to elicit similar antibodies by vaccination. To address this issue, we have undertaken an informatics-based approach to understand the genetic and immunologic processes controlling the development of HIV-1-neutralizing antibodies. As DNA sequencing comprises the fastest growing database of biological information, we focused on incorporating next-generation sequencing of B-cell transcripts to determine the origin, maturation pathway, and prevalence of broadly neutralizing antibody lineages (Antibodyomics1, 2, 4, and 6). We also incorporated large-scale robotic analyses of serum neutralization to identify and quantify neutralizing antibodies in donor cohorts (Antibodyomics3). Statistical analyses furnish another layer of insight (Antibodyomics5), with physical characteristics of antibodies and their targets through molecular dynamics simulations (Antibodyomics7) and free energy perturbation analyses (Antibodyomics8) providing information-rich output. Functional interrogation of individual antibodies (Antibodyomics9) and synthetic antibody libraries (Antibodyomics10) also yields multi-dimensional data by which to understand and improve antibodies. Antibodyomics, described here, thus comprise resolution-enhancing tools, which collectively embody an information-driven discovery engine aimed toward the development of effective B cell-based vaccines.
Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos B/imunologia , Biologia Computacional , Infecções por HIV/imunologia , HIV-1/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Linfócitos B/virologia , Anticorpos Anti-HIV/metabolismo , Humanos , Imunidade HumoralRESUMO
Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp160 do Envelope de HIV/química , Proteína gp160 do Envelope de HIV/imunologia , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/isolamento & purificação , Afinidade de Anticorpos/genética , Afinidade de Anticorpos/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sítios de Ligação/imunologia , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Linhagem da Célula , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Mapeamento de Epitopos , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Evolução Molecular , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/isolamento & purificação , Infecções por HIV/imunologia , HIV-1/química , HIV-1/imunologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Testes de Neutralização , Estrutura Terciária de Proteína , Hipermutação Somática de Imunoglobulina/genéticaRESUMO
Current human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.
Assuntos
Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Evolução Molecular , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , HIV-1/química , HIV-1/imunologia , Vacinas contra a AIDS/imunologia , África , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/genética , Antígenos CD4/química , Antígenos CD4/imunologia , Linhagem da Célula , Células Cultivadas , Células Clonais/citologia , Reações Cruzadas/imunologia , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-HIV/genética , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/classificação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Testes de Neutralização , Filogenia , Estrutura Terciária de ProteínaRESUMO
UNLABELLED: The epitopes defined by HIV-1 broadly neutralizing antibodies (bNAbs) are valuable templates for vaccine design, and studies of the immunological development of these antibodies are providing insights for vaccination strategies. In addition, the most potent and broadly reactive of these bNAbs have potential for clinical use. We previously described a family of 12 V1V2-directed neutralizing antibodies, CAP256-VRC26, isolated from an HIV-1 clade C-infected donor at years 1, 2, and 4 of infection (N. A. Doria-Rose et al., Nature 509:55-62, 2014, http://dx.doi.org/10.1038/nature13036). Here, we report on the isolation and characterization of new members of the family mostly obtained at time points of peak serum neutralization breadth and potency. Thirteen antibodies were isolated from B cell culture, and eight were isolated using trimeric envelope probes for differential single B cell sorting. One of the new antibodies displayed a 10-fold greater neutralization potency than previously published lineage members. This antibody, CAP256-VRC26.25, neutralized 57% of diverse clade viral isolates and 70% of clade C isolates with remarkable potency. Among the viruses neutralized, the median 50% inhibitory concentration was 0.001 µg/ml. All 33 lineage members targeted a quaternary epitope focused on V2. While all known bNAbs targeting the V1V2 region interact with the N160 glycan, the CAP256-VRC26 antibodies showed an inverse correlation of neutralization potency with dependence on this glycan. Overall, our results highlight the ongoing evolution within a single antibody lineage and describe more potent and broadly neutralizing members with potential clinical utility, particularly in areas where clade C is prevalent. IMPORTANCE: Studies of HIV-1 broadly neutralizing antibodies (bNAbs) provide valuable information for vaccine design, and the most potent and broadly reactive of these bNAbs have potential for clinical use. We previously described a family of V1V2-directed neutralizing antibodies from an HIV-1 clade C-infected donor. Here, we report on the isolation and characterization of new members of the family mostly obtained at time points of peak serum neutralization breadth and potency. One of the new antibodies, CAP256-VRC26.25, displayed a 10-fold greater neutralization potency than previously described lineage members. It neutralized 57% of diverse clade viral isolates and 70% of clade C isolates with remarkable potency: the median 50% inhibitory concentration was 0.001 µg/ml. Our results highlight the ongoing evolution within a single antibody lineage and describe more potent and broadly neutralizing members with potential clinical utility, particularly in areas where clade C is prevalent.
Assuntos
Anticorpos Neutralizantes/imunologia , Reações Cruzadas , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/isolamento & purificação , Mapeamento de Epitopos , Feminino , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/isolamento & purificação , Proteína gp120 do Envelope de HIV/imunologia , Humanos , Concentração Inibidora 50 , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
Accumulation of somatic mutations in antibody variable regions is critical for antibody affinity maturation, with HIV-1 broadly neutralizing antibodies (bnAbs) generally requiring years to develop. We recently found that the rate at which mutations accumulate decreases over time, but the mechanism governing this slowing is unclear. In this study, we investigated whether natural selection and/or mutability of the antibody variable region contributed significantly to observed decrease in rate. We used longitudinally sampled sequences of immunoglobulin transcripts of single lineages from each of 3 donors, as determined by next generation sequencing. We estimated the evolutionary rates of the complementarity determining regions (CDRs), which are most significant for functional selection, and found they evolved about 1.5- to 2- fold faster than the framework regions. We also analyzed the presence of AID hotspots and coldspots at different points in lineage development and observed an average decrease in mutability of less than 10 percent over time. Altogether, the correlation between Darwinian selection strength and evolutionary rate trended toward significance, especially for CDRs, but cannot fully explain the observed changes in evolutionary rate. The mutability modulated by AID hotspots and coldspots changes correlated only weakly with evolutionary rates. The combined effects of Darwinian selection and mutability contribute substantially to, but do not fully explain, evolutionary rate change for HIV-1-targeting bnAb lineages.
Assuntos
Anticorpos Neutralizantes/genética , Anticorpos Anti-HIV/genética , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/genética , HIV-1/imunologia , Afinidade de Anticorpos/genética , Regiões Determinantes de Complementaridade/genética , Biologia Computacional , Evolução Molecular , Genes de Imunoglobulinas , Infecções por HIV/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Região Variável de Imunoglobulina/genética , Estudos Longitudinais , Modelos Genéticos , Modelos Imunológicos , Mutação , Seleção Genética , Hipermutação Somática de ImunoglobulinaRESUMO
Durable humoral immunity is mediated by long-lived plasma cells (LLPCs) that reside in the bone marrow. It remains unclear whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein vaccination is able to elicit and maintain LLPCs. Here, we describe a sensitive method to identify and isolate antigen-specific LLPCs by tethering antibodies secreted by these cells onto the cell surface. Using this method, we found that two doses of adjuvanted SARS-CoV-2 spike protein vaccination are able to induce spike protein-specific LLPC reservoirs enriched for receptor binding domain specificities in the bone marrow of nonhuman primates that are detectable for several months after vaccination. Immunoglobulin gene sequencing confirmed that several of these LLPCs were clones of memory B cells elicited 2 weeks after boost that had undergone further somatic hypermutation. Many of the antibodies secreted by these LLPCs also exhibited improved neutralization and cross-reactivity compared with earlier time points. These findings establish our method as a means to sensitively and reliably detect rare antigen-specific LLPCs and demonstrate that adjuvanted SARS-CoV-2 spike protein vaccination establishes spike protein-specific LLPC reservoirs.
Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Plasmócitos/metabolismo , Anticorpos Antivirais , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Adjuvantes Imunológicos , Primatas , Anticorpos NeutralizantesRESUMO
Lassa virus (LASV) infection is expanding outside its traditionally endemic areas in West Africa, posing a pandemic biothreat. LASV-neutralizing antibodies, moreover, have proven difficult to elicit. To gain insight into LASV neutralization, here we develop a prefusion-stabilized LASV glycoprotein trimer (GPC), pan it against phage libraries comprising single-domain antibodies (nanobodies) from shark and camel, and identify one, D5, which neutralizes LASV. Cryo-EM analyses reveal D5 to recognize a cleavage-dependent site-of-vulnerability at the trimer apex. The recognized site appears specific to GPC intermediates, with protomers lacking full cleavage between GP1 and GP2 subunits. Guinea pig immunizations with the prefusion-stabilized cleavage-intermediate LASV GPC, first as trimer and then as a nanoparticle, induce neutralizing responses, targeting multiple epitopes including that of D5; we identify a neutralizing antibody (GP23) from the immunized guinea pigs. Collectively, our findings define a prefusion-stabilized GPC trimer, reveal an apex-situated site-of-vulnerability, and demonstrate elicitation of LASV-neutralizing responses by a cleavage-intermediate LASV trimer.
Assuntos
Febre Lassa , Anticorpos de Domínio Único , Animais , Cobaias , Vírus Lassa , Anticorpos Antivirais , Anticorpos NeutralizantesRESUMO
We describe humans with rare biallelic loss-of-function PTCRA variants impairing pre-α T cell receptor (pre-TCRα) expression. Low circulating naive αß T cell counts at birth persisted over time, with normal memory αß and high γδ T cell counts. Their TCRα repertoire was biased, which suggests that noncanonical thymic differentiation pathways can rescue αß T cell development. Only a minority of these individuals were sick, with infection, lymphoproliferation, and/or autoimmunity. We also report that 1 in 4000 individuals from the Middle East and South Asia are homozygous for a common hypomorphic PTCRA variant. They had normal circulating naive αß T cell counts but high γδ T cell counts. Although residual pre-TCRα expression drove the differentiation of more αß T cells, autoimmune conditions were more frequent in these patients compared with the general population.
Assuntos
Autoimunidade , Linfócitos Intraepiteliais , Glicoproteínas de Membrana , Receptores de Antígenos de Linfócitos T alfa-beta , Humanos , Autoimunidade/genética , Diferenciação Celular , Homozigoto , Linfócitos Intraepiteliais/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Glicoproteínas de Membrana/genética , Mutação com Perda de Função , Contagem de Linfócitos , Alelos , Infecções/imunologia , Transtornos Linfoproliferativos/imunologia , Linhagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou maisRESUMO
HIV gp120 engineered outer domain germline-targeting version 8 (eOD-GT8) was designed specifically to engage naive B cell precursors of VRC01-class antibodies. However, the frequency and affinity of naive B cell precursors able to recognize eOD-GT8 have been evaluated only in U.S. populations. HIV infection is disproportionally concentrated in sub-Saharan Africa, so we seek to characterize naive B cells able to recognize eOD-GT8 in sub-Saharan cohorts. We demonstrate that people from sub-Saharan Africa have a higher or equivalent frequency of naive B cells able to engage eOD-GT8 compared with people from the U.S. Genetically, the higher frequency of eOD-GT8-positive cells is accompanied by a higher level of naive B cells with gene signatures characteristic of the VRC01 class, as well as other CD4bs-directed antibodies. Our study demonstrates that vaccination with eOD-GT8 in sub-Saharan Africa could be successful at expanding and establishing a pool of CD4bs-directed memory B cells from naive precursors.
Assuntos
Infecções por HIV , HIV-1 , Humanos , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Células Precursoras de Linfócitos B , Proteína gp120 do Envelope de HIVRESUMO
As SARS-CoV-2 variants continue evolving, testing updated vaccines in non-human primates remains important for guiding human clinical practice. To date, such studies have focused on antibody titers and antigen-specific B and T cell frequencies. Here, we extend our understanding by integrating innate and adaptive immune responses to mRNA-1273 vaccination in rhesus macaques. We sorted innate immune cells from a pre-vaccine time point, as well as innate immune cells and antigen-specific peripheral B and T cells two weeks after each of two vaccine doses and used single-cell sequencing to assess the transcriptomes and adaptive immune receptors of each cell. We show that a subset of S-specific T cells expresses cytokines critical for activating innate responses, with a concomitant increase in CCR5-expressing intermediate monocytes and a shift of natural killer cells to a more cytotoxic phenotype. The second vaccine dose, administered 4 weeks after the first, elicits an increase in circulating germinal center-like B cells 2 weeks later, which are more clonally expanded and enriched for epitopes in the receptor binding domain. Both doses stimulate inflammatory response genes associated with elevated antibody production. Overall, we provide a comprehensive picture of bidirectional signaling between innate and adaptive components of the immune system and suggest potential mechanisms for the enhanced response to secondary exposure.