Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Chembiochem ; 22(6): 1099-1110, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33145893

RESUMO

CYP154C5 from Nocardia farcinica is a P450 monooxygenase able to hydroxylate a range of steroids with high regio- and stereoselectivity at the 16α-position. Using protein engineering and substrate modifications based on the crystal structure of CYP154C5, an altered regioselectivity of the enzyme in steroid hydroxylation had been achieved. Thus, conversion of progesterone by mutant CYP154C5 F92A resulted in formation of the corresponding 21-hydroxylated product 11-deoxycorticosterone in addition to 16α-hydroxylation. Using MD simulation, this altered regioselectivity appeared to result from an alternative binding mode of the steroid in the active site of mutant F92A. MD simulation further suggested that the entrance of water to the active site caused higher uncoupling in this mutant. Moreover, exclusive 15α-hydroxylation was observed for wild-type CYP154C5 in the conversion of 5α-androstan-3-one, lacking an oxy-functional group at C17. Overall, our data give valuable insight into the structure-function relationship of this cytochrome P450 monooxygenase for steroid hydroxylation.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Engenharia de Proteínas , Esteroides/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/genética , Hidroxilação , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Nocardia/metabolismo , Estereoisomerismo , Especificidade por Substrato
2.
Proc Natl Acad Sci U S A ; 113(8): E958-67, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26842837

RESUMO

Class I terpene synthases generate the structural core of bioactive terpenoids. Deciphering structure-function relationships in the reactive closed complex and targeted engineering is hampered by highly dynamic carbocation rearrangements during catalysis. Available crystal structures, however, represent the open, catalytically inactive form or harbor nonproductive substrate analogs. Here, we present a catalytically relevant, closed conformation of taxadiene synthase (TXS), the model class I terpene synthase, which simulates the initial catalytic time point. In silico modeling of subsequent catalytic steps allowed unprecedented insights into the dynamic reaction cascades and promiscuity mechanisms of class I terpene synthases. This generally applicable methodology enables the active-site localization of carbocations and demonstrates the presence of an active-site base motif and its dominating role during catalysis. It additionally allowed in silico-designed targeted protein engineering that unlocked the path to alternate monocyclic and bicyclic synthons representing the basis of a myriad of bioactive terpenoids.


Assuntos
Alquil e Aril Transferases/química , Modelos Moleculares , Análise de Sequência de Proteína/métodos , Motivos de Aminoácidos , Catálise , Domínio Catalítico
3.
J Comput Chem ; 39(19): 1215-1225, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29450907

RESUMO

Molecular dynamics (MD) simulations have been performed to study the dynamic behavior of noncovalent enzyme carbocation complexes involved in the cyclization of geranylgeranyl diphosphate to taxadiene catalyzed by taxadiene synthase (TXS). Taxadiene and the observed four side products originate from the deprotonation of carbocation intermediates. The MD simulations of the TXS carbocation complexes provide insights into potential deprotonation mechanisms of such carbocations. The MD results do not support a previous hypothesis that carbocation tumbling is a key factor in the deprotonation of the carbocations by pyrophosphate. Instead water bridges are identified which may allow the formation of side products via multiple proton transfer reactions. A novel reaction path for taxadiene formation is proposed on the basis of the simulations. © 2018 Wiley Periodicals, Inc.

4.
Microb Cell Fact ; 15: 86, 2016 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-27216162

RESUMO

BACKGROUND: De novo production of multi-hydroxylated diterpenoids is challenging due to the lack of efficient redox systems. RESULTS: In this study a new reductase/ferredoxin system from Streptomyces afghaniensis (AfR·Afx) was identified, which allowed the Escherichia coli-based production of the trihydroxylated diterpene cyclooctatin, a potent inhibitor of human lysophospholipase. This production system provides a 43-fold increase in cyclooctatin yield (15 mg/L) compared to the native producer. AfR·Afx is superior in activating the cylcooctatin-specific class I P450s CotB3/CotB4 compared to the conventional Pseudomonas putida derived PdR·Pdx model. To enhance the activity of the PdR·Pdx system, the molecular basis for these activity differences, was examined by molecular engineering. CONCLUSION: We demonstrate that redox system engineering can boost and harmonize the catalytic efficiency of class I hydroxylase enzyme cascades. Enhancing CotB3/CotB4 activities also provided for identification of CotB3 substrate promiscuity and sinularcasbane D production, a functionalized diterpenoid originally isolated from the soft coral Sinularia sp.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Diterpenos/metabolismo , Escherichia coli/genética , Proteínas de Bactérias/química , Sítios de Ligação , Diterpenos/química , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Ligação de Hidrogênio , Hidroxilação , Simulação de Acoplamento Molecular , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Streptomyces/enzimologia , Streptomyces/genética , Especificidade por Substrato
5.
Comput Struct Biotechnol J ; 18: 1819-1829, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695274

RESUMO

While chemical steps involved in bioactive cembranoid biosynthesis have been examined, the corresponding enzymatic mechanisms leading to their formation remain elusive. In the tobacco plant, Nicotiana tabacum, a putative cembratriene-ol synthase (CBTS) initiates the catalytic cascade that lead to the biosynthesis of cembratriene-4,6-diols, which displays antibacterial- and anti-proliferative activities. We report here on structural homology models, functional studies, and mechanistic explorations of this enzyme using a combination of biosynthetic and computational methods. This approach guided us to develop an efficient de novo production of five bioactive non- and monohydroxylated cembranoids. Our homology models in combination with quantum and classical simulations suggested putative principles of the CBTS catalytic cycle, and provided a possible rationale for the formation of premature olefinic side products. Moreover, the functional reconstruction of a N. tabacum-derived class II P450 with a cognate CPR, obtained by transcriptome mining provided for production of bioactive cembratriene-4,6-diols. Our combined findings provide mechanistic insights into cembranoid biosynthesis, and a basis for the sustainable industrial production of highly valuable bioactive cembranoids.

6.
Sci Rep ; 9(1): 5106, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911023

RESUMO

HheG from Ilumatobacter coccineus is a halohydrin dehalogenase with synthetically useful activity in the ring opening of cyclic epoxides with various small anionic nucleophiles. This enzyme provides access to chiral ß-substituted alcohols that serve as building blocks in the pharmaceutical industry. Wild-type HheG suffers from low thermostability, which poses a significant drawback for potential applications. In an attempt to thermostabilize HheG by protein engineering, several single mutants at position 123 were identified which displayed up to 14 °C increased apparent melting temperatures and up to three-fold higher activity. Aromatic amino acids at position 123 resulted even in a slightly higher enantioselectivity. Crystal structures of variants T123W and T123G revealed a flexible loop opposite to amino acid 123. In variant T123G, this loop adopted two different positions resulting in an open or partially closed active site. Classical molecular dynamics simulations confirmed a high mobility of this loop. Moreover, in variant T123G this loop adopted a position much closer to residue 123 resulting in denser packing and increased buried surface area. Our results indicate an important role for position 123 in HheG and give first structural and mechanistic insight into the thermostabilizing effect of mutations T123W and T123G.


Assuntos
Hidrolases/química , Hidrolases/metabolismo , Cinética , Modelos Moleculares , Mutação/genética , Engenharia de Proteínas , Estereoisomerismo , Especificidade por Substrato
7.
Front Microbiol ; 6: 1115, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528263

RESUMO

The diterpene (1R,3E,7E,11S,12S)-3,7,18-dolabellatriene from the marine brown alga Dilophus spiralis belongs to the dolabellanes natural product family and has antimicrobial activity against multi-drug resistant Staphylococcus aureus. Recently, we generated a CotB2 diterpene synthase mutant (W288G), which instead of its native product cyclooctat-9-en-7-ol, generates (1R,3E,7E,11S,12S)-3,7,18-dolabellatriene. In vivo CotB2 W288G reconstitution in an Escherichia coli based terpene production system, allowed efficient production of this olefinic macrocycle. To diversify the 3,7,18-dolabellatriene bioactivity we evaluated chemical and enzymatic methods for selective oxidation. Epoxidation by acetic peracid, which was formed in situ by a lipase catalyzed reaction of acetic acid with H2O2, provided efficient access to two monooxidized dolabellanes and to a novel di-epoxidated dolabellane species. These compounds could act as synthons en-route to new dolabellanes with diversified bioactivities. Furthermore, we demonstrate the almost quantitative 3,7,18-dolabellatriene conversion into the new, non-natural compound (1R,3E,7E,11S,12S,18R)-dolabella-3,7-diene-20-ol by hydroboration-oxidation with an enantiomeric excess of 94%, for the first time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA