Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 27(18): 11520-7, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21797243

RESUMO

Many organisms use macromolecules, often proteins or peptides, to control the growth of inorganic crystals into complex materials. The ability to model peptide-mineral interactions accurately could allow for the design of novel peptides to produce materials with desired properties. Here, we tested a computational algorithm developed to predict the structure of peptides on mineral surfaces. Using this algorithm, we analyzed energetic and structural differences between a 16-residue peptide (bap4) designed to interact with a calcite growth plane and single- and double-point mutations of the charged residues. Currently, no experimental method is available to resolve the structures of proteins on solid surfaces, which precludes benchmarking for computational models. Therefore, to test the models, we chemically synthesized each peptide and analyzed its effects on calcite crystal growth. Whereas bap4 affected the crystal growth by producing heavily stepped corners and edges, point mutants had variable influences on morphology. Calculated residue-specific binding energies correlated with experimental observations; point mutations of residues predicted to be crucial to surface interactions produced morphologies most similar to unmodified calcite. These results suggest that peptide conformation plays a role in mineral interactions and that the computational model supplies valid energetic and structural data that can provide information about expected crystal morphology.


Assuntos
Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Desenho de Fármacos , Modelos Moleculares , Mutação , Peptídeos/síntese química , Peptídeos/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Conformação Proteica
2.
J Am Chem Soc ; 132(35): 12252-62, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20712308

RESUMO

Many organisms produce complex, hierarchically structured, inorganic materials via protein-influenced crystal growth--a process known as biomineralization. Understanding this process would shed light on hard-tissue formation and guide efforts to develop biomaterials. We created and tested a computational method to design protein-biomineralization systems. The algorithm folds a protein from a fully extended structure and simultaneously optimizes the fold, orientation, and sequence of the protein adsorbed to a crystal surface. We used the algorithm to design peptides (16 residues) to modify calcite (CaCO(3)) crystallization. We chemically synthesized six peptides that were predicted to bind different states of a calcite growth plane. All six peptides dramatically affected calcite crystal growth (as observed by scanning electron microscopy), and the effects were dependent on the targeted state of the {001} growth plane. Additionally, we synthesized and assayed scrambled variants of all six designed peptides to distinguish cases where sequence composition determines the interactions versus cases where sequence order (and presumably structure) plays a role. Scrambled variants of negatively charged peptides also had dramatic effects on calcite crystallization; in contrast, scrambled variants of positively charged peptides had a variable effect on crystallization, ranging from dramatic to mild. Special emphasis is often placed on acidic protein residues in calcified tissue mineralization; the work presented here suggests an important role for basic residues as well. In particular, this work implicates a potential role for basic residues in sequence-order specificity for peptide-mineral interactions.


Assuntos
Materiais Biocompatíveis/síntese química , Carbonato de Cálcio/química , Simulação por Computador , Peptídeos/química , Algoritmos , Materiais Biocompatíveis/química , Modelos Moleculares , Tamanho da Partícula , Propriedades de Superfície
3.
Sci Rep ; 6: 34942, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27721433

RESUMO

Physiological cytokine environments arise from factors produced by diverse cell types in coordinated concert. Understanding the contributions of each cell type in the context of cell-cell communication is important for effectively designing disease modifying interventions. Here, we present multi-plexed measurement of 48 cytokines from a coculture system of primary human CD4+ T cells and monocytes across a spectrum of stimuli and for a range of relative T cell/monocyte compositions, coupled with corresponding measurements from PBMCs and plasma from the same donors. Computational analysis of the resulting data-sets elucidated communication-independent and communication-dependent contributions, including both positive and negative synergies. We find that cytokines in cell supernatants were uncorrelated to those found in plasma. Additionally, as an example of positive synergy, production levels of CXCR3 cytokines IP-10 and MIG, depend non-linearly on both IFNγ and TNFα levels in cross-talk between T cells and monocytes. Overall, this work demonstrates that communication between cell types can significantly impact the consequent cytokine environment, emphasizing the value of mixed cell population studies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Comunicação Celular , Citocinas/metabolismo , Monócitos/imunologia , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Masculino
4.
Integr Biol (Camb) ; 5(11): 1355-65, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24084984

RESUMO

Tumor necrosis factor alpha (TNF-α) is an inflammatory cytokine that can elicit distinct cellular behaviors under different molecular contexts. Mitogen activated protein kinase (MAPK) pathways, especially the extracellular signal-regulated kinase (Erk) pathway, help to integrate influences from the environmental context, and therefore modulate the phenotypic effect of TNF-α exposure. To test how variations in flux through the Erk pathway modulate TNF-α-elicited phenotypes in a complex physiological environment, we exposed mice with different Ras mutations (K-Ras activation, N-Ras activation, and N-Ras ablation) to TNF-α and observed phenotypic and signaling changes in the intestinal epithelium. Hyperactivation of Mek1, an Erk kinase, was observed in the intestine of mice with K-Ras activation and, surprisingly, in N-Ras null mice. Nevertheless, these similar Mek1 outputs did not give rise to the same phenotype, as N-Ras null intestine was hypersensitive to TNF-α-induced intestinal cell death while K-Ras mutant intestine was not. A systems biology approach applied to sample the network state revealed that the signaling contexts presented by these two Ras isoform mutations were different. Consistent with our experimental data, N-Ras ablation induced a signaling network state that was mathematically predicted to be pro-death, while K-Ras activation did not. Further modeling by constrained Fuzzy Logic (cFL) revealed that N-Ras and K-Ras activate the signaling network with different downstream distributions and dynamics, with N-Ras effects being more transient and diverted more towards PI3K-Akt signaling and K-Ras effects being more sustained and broadly activating many pathways. Our study highlights the necessity to consider both environmental and genomic contexts of signaling pathway activation in dictating phenotypic responses, and demonstrates how modeling can provide insight into complex in vivo biological mechanisms, such as the complex interplay between K-Ras and N-Ras in their downstream effects.


Assuntos
Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas ras/genética , Algoritmos , Alelos , Animais , Apoptose , Lógica Fuzzy , Regulação da Expressão Gênica , Genótipo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Mutação , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA