Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurophysiol ; 113(10): 3511-8, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25867739

RESUMO

The rodent vibrissal-trigeminal system is one of the most widely used models for the study of somatosensation and tactile perception, but to date the field has been unable to quantify the complete set of mechanical input signals generated during natural whisking behavior. In this report we show that during whisking behavior of awake rats (Rattus norvegicus), the whisker will often bend out of its plane of rotation, generating sizeable mechanical (tactile) signals out of the plane. We then develop a model of whisker bending that allows us to compute the three-dimensional tactile signals at the vibrissal base during active whisking behavior. Considerable information can be lost if whisking motions are considered only in two dimensions, and we offer some suggestions for experimentalists concerned with monitoring the direction of bending. These data represent the first quantification of the physical signals transmitted to the mechanoreceptors in the follicle during active whisking behavior.


Assuntos
Mecanorreceptores/fisiologia , Modelos Biológicos , Percepção do Tato/fisiologia , Tato/fisiologia , Vibrissas/inervação , Animais , Simulação por Computador , Movimento (Física) , Estimulação Física , Ratos , Vigília
2.
Elife ; 52016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27348221

RESUMO

Tactile information available to the rat vibrissal system begins as external forces that cause whisker deformations, which in turn excite mechanoreceptors in the follicle. Despite the fundamental mechanical origin of tactile information, primary sensory neurons in the trigeminal ganglion (Vg) have often been described as encoding the kinematics (geometry) of object contact. Here we aimed to determine the extent to which Vg neurons encode the kinematics vs. mechanics of contact. We used models of whisker bending to quantify mechanical signals (forces and moments) at the whisker base while simultaneously monitoring whisker kinematics and recording single Vg units in both anesthetized rats and awake, body restrained rats. We employed a novel manual stimulation technique to deflect whiskers in a way that decouples kinematics from mechanics, and used Generalized Linear Models (GLMs) to show that Vg neurons more directly encode mechanical signals when the whisker is deflected in this decoupled stimulus space.


Assuntos
Fenômenos Biomecânicos , Neurônios/fisiologia , Gânglio Trigeminal/fisiologia , Vibrissas/fisiologia , Animais , Modelos Neurológicos , Estimulação Física , Ratos
3.
Front Neurorobot ; 6: 9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23097641

RESUMO

When an animal moves an array of sensors (e.g., the hand, the eye) through the environment, spatial and temporal gradients of sensory data are related by the velocity of the moving sensory array. In vision, the relationship between spatial and temporal brightness gradients is quantified in the "optical flow" equation. In the present work, we suggest an analog to optical flow for the rodent vibrissal (whisker) array, in which the perceptual intensity that "flows" over the array is bending moment. Changes in bending moment are directly related to radial object distance, defined as the distance between the base of a whisker and the point of contact with the object. Using both simulations and a 1×5 array (row) of artificial whiskers, we demonstrate that local object curvature can be estimated based on differences in radial distance across the array. We then develop two algorithms, both based on tactile flow, to predict the future contact points that will be obtained as the whisker array translates along the object. The translation of the robotic whisker array represents the rat's head velocity. The first algorithm uses a calculation of the local object slope, while the second uses a calculation of the local object curvature. Both algorithms successfully predict future contact points for simple surfaces. The algorithm based on curvature was found to more accurately predict future contact points as surfaces became more irregular. We quantify the inter-related effects of whisker spacing and the object's spatial frequencies, and examine the issues that arise in the presence of real-world noise, friction, and slip.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA