Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(2): 847-866, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34967415

RESUMO

The nucleotide messenger (p)ppGpp allows bacteria to adapt to fluctuating environments by reprogramming the transcriptome. Despite its well-recognized role in gene regulation, (p)ppGpp is only known to directly affect transcription in Proteobacteria by binding to the RNA polymerase. Here, we reveal a different mechanism of gene regulation by (p)ppGpp in Firmicutes: (p)ppGpp directly binds to the transcription factor PurR to downregulate purine biosynthesis gene expression upon amino acid starvation. We first identified PurR as a receptor of (p)ppGpp in Bacillus anthracis. A co-structure with Bacillus subtilis PurR reveals that (p)ppGpp binds to a PurR pocket reminiscent of the active site of phosphoribosyltransferase enzymes that has been repurposed to serve a purely regulatory role, where the effectors (p)ppGpp and PRPP compete to allosterically control transcription. PRPP inhibits PurR DNA binding to induce transcription of purine synthesis genes, whereas (p)ppGpp antagonizes PRPP to enhance PurR DNA binding and repress transcription. A (p)ppGpp-refractory purR mutant in B. subtilis fails to downregulate purine synthesis genes upon amino acid starvation. Our work establishes the precedent of (p)ppGpp as an effector of a classical transcription repressor and reveals the key function of (p)ppGpp in regulating nucleotide synthesis through gene regulation, from soil bacteria to pathogens.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Proteínas Repressoras/metabolismo , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica
2.
PLoS Genet ; 16(8): e1008987, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32853297

RESUMO

Replication-transcription conflicts promote mutagenesis and give rise to evolutionary signatures, with fundamental importance to genome stability ranging from bacteria to metastatic cancer cells. This review focuses on the interplay between replication-transcription conflicts and the evolution of gene directionality. In most bacteria, the majority of genes are encoded on the leading strand of replication such that their transcription is co-directional with the direction of DNA replication fork movement. This gene strand bias arises primarily due to negative selection against deleterious consequences of head-on replication-transcription conflict. However, many genes remain head-on. Can head-on orientation provide some benefit? We combine insights from both mechanistic and evolutionary studies, review published work, and analyze gene expression data to evaluate an emerging model that head-on genes are temporal targets for adaptive mutagenesis during stress. We highlight the alternative explanation that genes in the head-on orientation may simply be the result of genomic inversions and relaxed selection acting on nonessential genes. We seek to clarify how the mechanisms of replication-transcription conflict, in concert with other mutagenic mechanisms, balanced by natural selection, have shaped bacterial genome evolution.


Assuntos
Replicação do DNA/genética , Evolução Molecular , Seleção Genética/genética , Transcrição Gênica , Bactérias/genética , Genoma Bacteriano/genética
3.
Clin J Sport Med ; 33(3): 280-282, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730292

RESUMO

ABSTRACT: Vastus lateralis tendon tear is an infrequent cause of lateral knee pain. Previously reported cases have described acute injury in middle-aged men after eccentric quadriceps contraction. This case report discusses 2 adolescent patients with longitudinal midsubstance tears diagnosed with MRI and dynamic ultrasound and treated successfully with operative intervention.


Assuntos
Articulação do Joelho , Músculo Quadríceps , Masculino , Pessoa de Meia-Idade , Adolescente , Humanos , Músculo Quadríceps/diagnóstico por imagem , Joelho , Ruptura
4.
Nucleic Acids Res ; 48(10): 5332-5348, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32324221

RESUMO

The genomes of organisms from all three domains of life harbor endogenous base modifications in the form of DNA methylation. In bacterial genomes, methylation occurs on adenosine and cytidine residues to include N6-methyladenine (m6A), 5-methylcytosine (m5C), and N4-methylcytosine (m4C). Bacterial DNA methylation has been well characterized in the context of restriction-modification (RM) systems, where methylation regulates DNA incision by the cognate restriction endonuclease. Relative to RM systems less is known about how m6A contributes to the epigenetic regulation of cellular functions in Gram-positive bacteria. Here, we characterize site-specific m6A modifications in the non-palindromic sequence GACGmAG within the genomes of Bacillus subtilis strains. We demonstrate that the yeeA gene is a methyltransferase responsible for the presence of m6A modifications. We show that methylation from YeeA does not function to limit DNA uptake during natural transformation. Instead, we identify a subset of promoters that contain the methylation consensus sequence and show that loss of methylation within promoter regions causes a decrease in reporter expression. Further, we identify a transcriptional repressor that preferentially binds an unmethylated promoter used in the reporter assays. With these results we suggest that m6A modifications in B. subtilis function to promote gene expression.


Assuntos
Adenosina/análogos & derivados , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Adenosina/análise , Adenosina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos , Metilação de DNA , Enzimas de Restrição-Modificação do DNA , Epigênese Genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/fisiologia , Fatores de Transcrição/metabolismo
5.
Am Fam Physician ; 106(6): 675-683, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36521464

RESUMO

Hip fractures are common causes of disability, with mortality rates reaching 30% at one year. Nonmodifiable risk factors include lower socioeconomic status, older age, female sex, prior fracture, metabolic bone disease, and bony malignancy. Modifiable risk factors include low body mass index, having osteoporosis, increased fall risk, medications that increase fall risk or decrease bone mineral density, and substance use. Hip fractures present with anterior groin pain, inability to bear weight, or a shortened, abducted, externally rotated limb. Plain radiography is usually sufficient for diagnosis, but magnetic resonance imaging should be obtained if suspicion of fracture persists despite normal radiography. Operative management within 24 to 48 hours of the fracture optimizes outcomes. Fractures are usually managed by surgery, with the approach based on fracture type and location; spinal or general anesthesia can be used. Nonsurgical management can be considered for patients who are not good surgical candidates. Pre- and postoperative antistaphylococcal antibiotics are given to prevent joint infection. Medications for venous thromboembolism prophylaxis are also recommended. Physicians should be alert for the presence of delirium, which is a common postoperative complication. Early postoperative mobilization, followed by rehabilitation, improves outcomes. Subsequent care focuses on prevention, with increased physical activity, home safety assessments, and minimizing polypharmacy. Two less common hip fractures can also occur: femoral neck stress fractures and insufficiency fractures. Femoral neck stress fractures typically occur in dancers 20 to 30 years of age, endurance athletes, and military service members, often because of training overload. Insufficiency fractures due to compromised bone strength occur without trauma in postmenopausal women. If not recognized and treated, these fractures can progress to complete and displaced fractures with high rates of nonunion and avascular necrosis.


Assuntos
Fraturas do Colo Femoral , Fraturas de Estresse , Fraturas do Quadril , Osteoporose , Feminino , Humanos , Fraturas de Estresse/complicações , Fraturas do Quadril/diagnóstico , Fraturas do Quadril/terapia , Fraturas do Quadril/complicações , Fraturas do Colo Femoral/complicações , Fraturas do Colo Femoral/cirurgia , Densidade Óssea
6.
PLoS Genet ; 14(7): e1007512, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29979679

RESUMO

The DNA damage response is a signaling pathway found throughout biology. In many bacteria the DNA damage checkpoint is enforced by inducing expression of a small, membrane bound inhibitor that delays cell division providing time to repair damaged chromosomes. How cells promote checkpoint recovery after sensing successful repair is unknown. By using a high-throughput, forward genetic screen, we identified two unrelated proteases, YlbL and CtpA, that promote DNA damage checkpoint recovery in Bacillus subtilis. Deletion of both proteases leads to accumulation of the checkpoint protein YneA. We show that DNA damage sensitivity and increased cell elongation in protease mutants depends on yneA. Further, expression of YneA in protease mutants was sufficient to inhibit cell proliferation. Finally, we show that both proteases interact with YneA and that one of the two proteases, CtpA, directly cleaves YneA in vitro. With these results, we report the mechanism for DNA damage checkpoint recovery in bacteria that use membrane bound cell division inhibitors.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Endopeptidases/metabolismo , Proteínas de Bactérias/genética , Pontos de Checagem do Ciclo Celular/genética , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Endopeptidases/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteômica
7.
Crit Rev Biochem Mol Biol ; 53(1): 29-48, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29108429

RESUMO

Mutations in an organism's genome can arise spontaneously, that is, in the absence of exogenous stress and prior to selection. Mutations are often neutral or deleterious to individual fitness but can also provide genetic diversity driving evolution. Mutagenesis in bacteria contributes to the already serious and growing problem of antibiotic resistance. However, the negative impacts of spontaneous mutagenesis on human health are not limited to bacterial antibiotic resistance. Spontaneous mutations also underlie tumorigenesis and evolution of drug resistance. To better understand the causes of genetic change and how they may be manipulated in order to curb antibiotic resistance or the development of cancer, we must acquire a mechanistic understanding of the major sources of mutagenesis. Bacterial systems are particularly well-suited to studying mutagenesis because of their fast growth rate and the panoply of available experimental tools, but efforts to understand mutagenic mechanisms can be complicated by the experimental system employed. Here, we review our current understanding of mutagenic mechanisms in bacteria and describe the methods used to study mutagenesis in bacterial systems.


Assuntos
Bactérias/genética , Mutagênese , Animais , Carcinogênese/genética , Farmacorresistência Bacteriana , Humanos , Mutação , Acúmulo de Mutações
8.
Proc Natl Acad Sci U S A ; 114(44): 11733-11738, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078353

RESUMO

Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucleoside triphosphate (dNTP). Ribonucleotides represent a major threat to genome integrity with the potential to cause strand breaks. Furthermore, it has been shown in the bacterium Bacillus subtilis that loss of RER increases spontaneous mutagenesis. Despite the high rNTP error rate and the effect on genome integrity, the mechanism underlying mutagenesis in RER-deficient bacterial cells remains unknown. We performed mutation accumulation lines and genome-wide mutational profiling of B. subtilis lacking RNase HII, the enzyme that incises at single rNMP residues initiating RER. We show that loss of RER in B. subtilis causes strand- and sequence-context-dependent GC → AT transitions. Using purified proteins, we show that the replicative polymerase DnaE is mutagenic within the sequence context identified in RER-deficient cells. We also found that DnaE does not perform strand displacement synthesis. Given the use of nucleotide excision repair (NER) as a backup pathway for RER in RNase HII-deficient cells and the known mutagenic profile of DnaE, we propose that misincorporated ribonucleotides are removed by NER followed by error-prone resynthesis with DnaE.


Assuntos
Bacillus subtilis/genética , DNA Bacteriano/genética , Ribonucleotídeos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/fisiologia , Modelos Biológicos , Mutagênese , Mutação , Ribonuclease H/genética , Ribonuclease H/metabolismo
9.
Curr Sports Med Rep ; 19(9): 360-366, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32925375

RESUMO

Femoroacetabular impingement (FAI) syndrome is one of the most rapidly evolving etiologies of hip pain. The 2016 Warwick Agreement consensus statement defined FAI syndrome as a triad of symptoms, signs, and radiographic findings. Cam morphology is more likely in athletes and is associated with repetitive hip loading in maximal flexion during adolescence. Much less is known about the development of pincer morphology. Physical therapy improves pain and function, justifying a trial before pursuing surgery. Musculoskeletal injections are utilized for FAI syndrome, but the evidence is limited. Arthroscopic surgery for FAI syndrome can correct the morphological changes and address the underlying soft tissue injuries. Recent studies evaluated reliable indicators of surgical outcomes, the most reliable of which is the presurgical presence of osteoarthritis. Recent studies demonstrate the efficacy of surgery, but with the risk of complication and no guarantee of a return to the same level of sport.


Assuntos
Impacto Femoroacetabular/fisiopatologia , Impacto Femoroacetabular/terapia , Artroscopia , Impacto Femoroacetabular/diagnóstico por imagem , Humanos , Injeções Intra-Articulares , Exame Físico , Modalidades de Fisioterapia
10.
Mol Microbiol ; 106(3): 335-350, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28795780

RESUMO

The most abundant oxidants controlling bacterial colonization on mucosal barrier epithelia are hypochlorous acid (HOCl), hypobromous acid (HOBr) and hypothiocyanous acid (HOSCN). All three oxidants are highly antimicrobial but little is known about their relative efficacies, their respective cellular targets, or what specific responses they elicit in bacteria. To address these important questions, we directly tested the individual oxidants on the virulent Pseudomonas aeruginosa strain PA14. We discovered that HOCl and HOBr work almost interchangeably, impacting non-growing bacterial cultures more significantly than actively growing bacteria, and eliciting similar stress responses, including the heat shock response. HOSCN treatment is distinctly different, affecting primarily actively growing PA14 and evoking stress responses suggestive of membrane damage. What all three oxidants have in common, however, is their ability to cause substantial protein aggregation. This effect became particularly obvious in strains lacking polyphosphate, a newly recognized chemical chaperone. Treatment of PA14 with the FDA-approved anti-inflammatory drug mesalamine, which has recently been shown to attenuate polyP production in a wide range of bacteria, effectively decreased the resistance of PA14 toward all three oxidants, suggesting that we have discovered a novel, targetable defense system in P. aeruginosa.


Assuntos
Oxidantes/metabolismo , Pseudomonas aeruginosa/metabolismo , Antibacterianos , Anti-Infecciosos , Bactérias/metabolismo , Bromatos/metabolismo , Ácido Hipocloroso/metabolismo , Tiocianatos/metabolismo
11.
Proc Natl Acad Sci U S A ; 112(50): E6898-906, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26575623

RESUMO

MutS is responsible for initiating the correction of DNA replication errors. To understand how MutS searches for and identifies rare base-pair mismatches, we characterized the dynamic movement of MutS and the replisome in real time using superresolution microscopy and single-molecule tracking in living cells. We report that MutS dynamics are heterogeneous in cells, with one MutS population exploring the nucleoid rapidly, while another MutS population moves to and transiently dwells at the replisome region, even in the absence of appreciable mismatch formation. Analysis of MutS motion shows that the speed of MutS is correlated with its separation distance from the replisome and that MutS motion slows when it enters the replisome region. We also show that mismatch detection increases MutS speed, supporting the model for MutS sliding clamp formation after mismatch recognition. Using variants of MutS and the replication processivity clamp to impair mismatch repair, we find that MutS dynamically moves to and from the replisome before mismatch binding to scan for errors. Furthermore, a block to DNA synthesis shows that MutS is only capable of binding mismatches near the replisome. It is well-established that MutS engages in an ATPase cycle, which is necessary for signaling downstream events. We show that a variant of MutS with a nucleotide binding defect is no longer capable of dynamic movement to and from the replisome, showing that proper nucleotide binding is critical for MutS to localize to the replisome in vivo. Our results provide mechanistic insight into the trafficking and movement of MutS in live cells as it searches for mismatches.


Assuntos
Bacillus subtilis/fisiologia , Pareamento Incorreto de Bases , Reparo do DNA , Proteína MutS de Ligação de DNA com Erro de Pareamento/fisiologia , Análise de Célula Única , Bacillus subtilis/genética , Replicação do DNA , DNA Bacteriano
12.
Crit Rev Biochem Mol Biol ; 50(3): 181-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25387798

RESUMO

In all living cells, DNA is the storage medium for genetic information. Being quite stable, DNA is well-suited for its role in storage and propagation of information, but RNA is also covalently included in DNA through various mechanisms. Recent studies also demonstrate useful aspects of including ribonucleotides in the genome during repair. Therefore, our understanding of the consequences of RNA inclusion into bacterial genomic DNA is just beginning, but with its high frequency of occurrence the consequences and potential benefits are likely to be numerous and diverse. In this review, we discuss the processes that cause ribonucleotide inclusion in genomic DNA, the pathways important for ribonucleotide removal and the consequences that arise should ribonucleotides remain nested in genomic DNA.


Assuntos
Reparo do DNA , Replicação do DNA , DNA Bacteriano/química , Escherichia coli/metabolismo , Ribonucleotídeos/metabolismo , Bacillus subtilis/metabolismo , DNA Polimerase I/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/enzimologia
13.
J Bacteriol ; 199(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27672193

RESUMO

Few discoveries have been more transformative to the biological sciences than the development of DNA sequencing technologies. The rapid advancement of sequencing and bioinformatics tools has revolutionized bacterial genetics, deepening our understanding of model and clinically relevant organisms. Although application of newer sequencing technologies to studies in bacterial genetics is increasing, the implementation of DNA sequencing technologies and development of the bioinformatics tools required for analyzing the large data sets generated remain a challenge for many. In this minireview, we have chosen to summarize three sequencing approaches that are particularly useful for bacterial genetics. We provide resources for scientists new to and interested in their application. Here, we discuss the analysis of data from transposon mutagenesis followed by deep sequencing (Tn-seq) to determine gene disruptions differentially represented in a mutant population and Illumina sequencing for identification of suppressor or other mutations, and we summarize single-molecule real-time (SMRT) sequencing for de novo genome assembly and the use of the output data for detection of DNA base modifications.


Assuntos
Bactérias/genética , DNA Bacteriano/genética , Técnicas de Amplificação de Ácido Nucleico , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Mutação
15.
Biophys J ; 111(12): 2562-2569, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-28002733

RESUMO

PolC is one of two essential replicative DNA polymerases found in the Gram-positive bacterium Bacillus subtilis. The B. subtilis replisome is eukaryotic-like in that it relies on a two DNA polymerase system for chromosomal replication. To quantitatively image how the replicative DNA polymerase PolC functions in B. subtilis, we applied photobleaching-assisted microscopy, three-dimensional superresolution imaging, and single-particle tracking to examine the in vivo behavior of PolC at single-molecule resolution. We report the stoichiometry of PolC proteins within each cell and within each replisome, we elucidate the diffusion characteristics of individual PolC molecules, and we quantify the exchange dynamics for PolC engaged in lagging strand synthesis. We show that PolC is highly dynamic: this DNA polymerase is constantly recruited to and released from a centrally located replisome, providing, to our knowledge, new insight into the organization and dynamics of the replisome in bacterial cells.


Assuntos
Bacillus subtilis/citologia , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Bacillus subtilis/genética , Sobrevivência Celular , Difusão , Transporte Proteico
16.
Proc Natl Acad Sci U S A ; 110(32): 12942-7, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23882084

RESUMO

The concentration of ribonucleoside triphosphates (rNTPs) in cells is far greater than the concentration of deoxyribonucleoside triphosphates (dNTPs), and this pool imbalance presents a challenge for DNA polymerases (Pols) to select their proper substrate. This report examines the effect of nucleotide pool imbalance on the rate and fidelity of the Escherichia coli replisome. We find that rNTPs decrease replication fork rate by competing with dNTPs at the active site of the C-family Pol III replicase at a step that does not require correct base-pairing. The effect of rNTPs on Pol rate generalizes to B-family eukaryotic replicases, Pols δ and ε. Imbalance of the dNTP pool also slows the replisome and thus is not specific to rNTPs. We observe a measurable frequency of rNMP incorporation that predicts one rNTP incorporated every 2.3 kb during chromosome replication. Given the frequency of rNMP incorporation, the repair of rNMPs is likely rapid. RNase HII nicks DNA at single rNMP residues to initiate replacement with dNMP. Considering that rNMPs will mark the new strand, RNase HII may direct strand-specificity for mismatch repair (MMR). How the newly synthesized strand is recognized for MMR is uncertain in eukaryotes and most bacteria, which lack a methyl-directed nicking system. Here we demonstrate that Bacillus subtilis incorporates rNMPs in vivo, that RNase HII plays a role in their removal, and the RNase HII gene deletion enhances mutagenesis, suggesting a possible role of incorporated rNMPs in MMR.


Assuntos
Replicação do DNA , Desoxirribonucleotídeos/genética , Escherichia coli/genética , Ribonucleotídeos/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ligação Competitiva , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Reparo do DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Desoxirribonucleotídeos/metabolismo , Eletroforese em Gel de Ágar , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Genéticos , Mutação , Ligação Proteica , Ribonuclease H/genética , Ribonuclease H/metabolismo , Ribonucleotídeos/metabolismo
17.
J Bacteriol ; 196(7): 1359-68, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24443534

RESUMO

DNA helicases have important roles in genome maintenance. The RecD helicase has been well studied as a component of the heterotrimeric RecBCD helicase-nuclease enzyme important for double-strand break repair in Escherichia coli. Interestingly, many bacteria lack RecBC and instead contain a RecD2 helicase, which is not known to function as part of a larger complex. Depending on the organism studied, RecD2 has been shown to provide resistance to a broad range of DNA-damaging agents while also contributing to mismatch repair (MMR). Here we investigated the importance of Bacillus subtilis RecD2 helicase to genome integrity. We show that deletion of recD2 confers a modest increase in the spontaneous mutation rate and that the mutational signature in ΔrecD2 cells is not consistent with an MMR defect, indicating a new function for RecD2 in B. subtilis. To further characterize the role of RecD2, we tested the deletion strain for sensitivity to DNA-damaging agents. We found that loss of RecD2 in B. subtilis sensitized cells to several DNA-damaging agents that can block or impair replication fork movement. Measurement of replication fork progression in vivo showed that forks collapse more frequently in ΔrecD2 cells, supporting the hypothesis that RecD2 is important for normal replication fork progression. Biochemical characterization of B. subtilis RecD2 showed that it is a 5'-3' helicase and that it directly binds single-stranded DNA binding protein. Together, our results highlight novel roles for RecD2 in DNA replication which help to maintain replication fork integrity during normal growth and when forks encounter DNA damage.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Sequência de Bases , Dano ao DNA , DNA Helicases/genética , Viabilidade Microbiana , Dados de Sequência Molecular , Mutação
18.
J Bacteriol ; 196(15): 2851-60, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24891441

RESUMO

RecA is central to maintaining genome integrity in bacterial cells. Despite the near-ubiquitous conservation of RecA in eubacteria, the pathways that facilitate RecA loading and repair center assembly have remained poorly understood in Bacillus subtilis. Here, we show that RecA rapidly colocalizes with the DNA polymerase complex (replisome) immediately following DNA damage or damage-independent replication fork arrest. In Escherichia coli, the RecFOR and RecBCD pathways serve to load RecA and the choice between these two pathways depends on the type of damage under repair. We found in B. subtilis that the rapid localization of RecA to repair centers is strictly dependent on RecO and RecR in response to all types of damage examined, including a site-specific double-stranded break and damage-independent replication fork arrest. Furthermore, we provide evidence that, although RecF is not required for RecA repair center formation in vivo, RecF does increase the efficiency of repair center assembly, suggesting that RecF may influence the initial stages of RecA nucleation or filament extension. We further identify single-stranded DNA binding protein (SSB) as an additional component important for RecA repair center assembly. Truncation of the SSB C terminus impairs the ability of B. subtilis to form repair centers in response to damage and damage-independent fork arrest. With these results, we conclude that the SSB-dependent recruitment of RecOR to the replisome is necessary for loading and organizing RecA into repair centers in response to DNA damage and replication fork arrest.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Replicação do DNA/efeitos dos fármacos , DNA Bacteriano/genética , Uracila/análogos & derivados , Bacillus subtilis/citologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Dano ao DNA , Reparo do DNA , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fluorescência Verde , Mutação , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Proteínas Recombinantes de Fusão , Uracila/farmacologia
19.
J Mol Biol ; : 168567, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583516

RESUMO

A pervasive question in biological research studying gene regulation, chromatin structure, or genomics is where, and to what extent, does a signal of interest arise genome-wide? This question is addressed using a variety of methods relying on high-throughput sequencing data as their final output, including ChIP-seq for protein-DNA interactions,1 GapR-seq for measuring supercoiling,2 and HBD-seq or DRIP-seq for R-loop positioning.3,4 Current computational methods to calculate genome-wide enrichment of the signal of interest usually do not properly handle the count-based nature of sequencing data, they often do not make use of the local correlation structure of sequencing data, and they do not apply any regularization of enrichment estimates. This can result in unrealistic estimates of the true underlying biological enrichment of interest, unrealistically low estimates of confidence in point estimates of enrichment (or no estimates of confidence at all), unrealistic gyrations in enrichment estimates at very close (<10 bp) genomic loci due to noise inherent in sequencing data, and in a multiple-hypothesis testing problem during interpretation of genome-wide enrichment estimates. We developed a tool called Enricherator to infer genome-wide enrichments from sequencing count data. Enricherator uses the variational Bayes algorithm to fit a generalized linear model to sequencing count data and to sample from the approximate posterior distribution of enrichment estimates (https://github.com/jwschroeder3/enricherator). Enrichments inferred by Enricherator more precisely identify known binding sites in cases where low coverage between binding sites leads to false-positive peak calls in these noisy regions of the genome; these benefits extend to published datasets.

20.
Elife ; 122024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634855

RESUMO

Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning-based segmentation, 'what you put is what you get' (WYPIWYG) - that is, pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother machine-based high-throughput imaging and analysis methods in their research.


Assuntos
Processamento de Imagem Assistida por Computador , Mães , Feminino , Humanos , Microscopia , Cultura , Pesquisadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA