Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Immunity ; 55(5): 862-878.e8, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35508166

RESUMO

Macrophage colony stimulating factor-1 (CSF-1) plays a critical role in maintaining myeloid lineage cells. However, congenital global deficiency of CSF-1 (Csf1op/op) causes severe musculoskeletal defects that may indirectly affect hematopoiesis. Indeed, we show here that osteolineage-derived Csf1 prevented developmental abnormalities but had no effect on monopoiesis in adulthood. However, ubiquitous deletion of Csf1 conditionally in adulthood decreased monocyte survival, differentiation, and migration, independent of its effects on bone development. Bone histology revealed that monocytes reside near sinusoidal endothelial cells (ECs) and leptin receptor (Lepr)-expressing perivascular mesenchymal stromal cells (MSCs). Targeted deletion of Csf1 from sinusoidal ECs selectively reduced Ly6C- monocytes, whereas combined depletion of Csf1 from ECs and MSCs further decreased Ly6Chi cells. Moreover, EC-derived CSF-1 facilitated recovery of Ly6C- monocytes and protected mice from weight loss following induction of polymicrobial sepsis. Thus, monocytes are supported by distinct cellular sources of CSF-1 within a perivascular BM niche.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Células-Tronco Mesenquimais , Animais , Medula Óssea , Células da Medula Óssea , Células Endoteliais , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Monócitos
2.
EMBO J ; 41(4): e106825, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35023164

RESUMO

Despite extensive analysis of pRB phosphorylation in vitro, how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb∆K4 and Rb∆K7 knock-in mice, in which either four or all seven phosphorylation sites in the C-terminal region of pRb, respectively, have been abolished by Ser/Thr-to-Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb∆K4 mice exhibit telomere attrition but no other abnormalities, Rb∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb∆K7 mice is insulin-sensitive and associated with failure of quiescent pancreatic ß-cells to re-enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence-associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre-treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re-entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK-inhibitor therapeutics, diabetes, and longevity.


Assuntos
Envelhecimento/fisiologia , Ácido Ascórbico/farmacologia , Diabetes Mellitus Experimental/prevenção & controle , Proteína do Retinoblastoma/metabolismo , Animais , Senescência Celular/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Fator de Transcrição E2F1/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Fibroblastos/efeitos dos fármacos , Técnicas de Introdução de Genes , Células Secretoras de Insulina/patologia , Camundongos , Fosforilação , Gravidez , Proteína do Retinoblastoma/genética , Telômero/genética
3.
J Biol Chem ; 292(9): 3789-3799, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28100771

RESUMO

Hepatocellular carcinoma is an end-stage complication of non-alcoholic fatty liver disease (NAFLD). Inflammation plays a critical role in the progression of non-alcoholic fatty liver disease and the development of hepatocellular carcinoma. However, whether steatosis per se promotes liver cancer, and the molecular mechanisms that control the progression in this disease spectrum remain largely elusive. The Janus kinase signal transducers and activators of transcription (JAK-STAT) pathway mediates signal transduction by numerous cytokines that regulate inflammation and may contribute to hepatocarcinogenesis. Mice with hepatocyte-specific deletion of JAK2 (L-JAK2 KO) develop extensive fatty liver spontaneously. We show here that this simple steatosis was insufficient to drive carcinogenesis. In fact, L-JAK2 KO mice were markedly protected from chemically induced tumor formation. Using the methionine choline-deficient dietary model to induce steatohepatitis, we found that steatohepatitis development was completely arrested in L-JAK2 KO mice despite the presence of steatosis, suggesting that JAK2 is the critical factor required for inflammatory progression in the liver. In line with this, L-JAK2 KO mice exhibited attenuated inflammation after chemical carcinogen challenge. This was associated with increased hepatocyte apoptosis without elevated compensatory proliferation, thus thwarting expansion of transformed hepatocytes. Taken together, our findings identify an indispensable role of JAK2 in hepatocarcinogenesis through regulating critical inflammatory pathways. Targeting the JAK-STAT pathway may provide a novel therapeutic option for the treatment of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Proliferação de Células , Fígado Gorduroso/metabolismo , Deleção de Genes , Hepatócitos/metabolismo , Inflamação , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
4.
Diabetologia ; 59(1): 187-196, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26515423

RESUMO

AIMS/HYPOTHESIS: Non-shivering thermogenesis in adipose tissue can be activated by excessive energy intake or following cold exposure. The molecular mechanisms regulating this activation have not been fully elucidated. The Janus kinase (JAK) - signal transducer and activator of transcription (STAT) pathway mediates the signal transduction of numerous hormones and growth factors that regulate adipose tissue development and function, and may play a role in adaptive thermogenesis. METHODS: We analysed mRNA and protein levels of uncoupling protein 1 (UCP1) and JAK2 in different adipose depots in response to metabolic and thermal stress. The in vivo role of JAK2 in adaptive thermogenesis was examined using mice with adipocyte-specific Jak2 deficiency (A-Jak2 KO). RESULTS: We show in murine brown adipose tissue (BAT) that JAK2 is upregulated together with UCP1 in response to high-fat diet (HFD) feeding and cold exposure. In contrast to white adipose tissue, where JAK2 was dispensable for UCP1 induction, we identified an essential role for BAT JAK2 in diet- and cold-induced thermogenesis via mediating the thermogenic response to ß-adrenergic stimulation. Accordingly, A-Jak2 KO mice were unable to upregulate BAT UCP1 following a HFD or after cold exposure. Therefore, A-Jak2 KO mice were cold intolerant and susceptible to HFD-induced obesity and diabetes. CONCLUSIONS/INTERPRETATION: Taken together, our results suggest that JAK2 plays a critical role in BAT function and adaptive thermogenesis. Targeting the JAK-STAT pathway may be a novel therapeutic approach for the treatment of obesity and related metabolic disorders.


Assuntos
Tecido Adiposo Marrom/fisiologia , Janus Quinase 2/metabolismo , Termogênese , Adipócitos/citologia , Adipogenia , Tecido Adiposo Branco/fisiologia , Adiposidade , Animais , Dieta Hiperlipídica , Feminino , Insulina/fisiologia , Canais Iônicos/fisiologia , Janus Quinase 1/fisiologia , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/fisiologia , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1/fisiologia , Transdução de Sinais , Proteína Desacopladora 1 , Regulação para Cima
5.
Proc Natl Acad Sci U S A ; 110(36): 14723-8, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23946427

RESUMO

Pancreatic endocrine cells expand rapidly during embryogenesis by neogenesis and proliferation, but during adulthood, islet cells have a very slow turnover. Disruption of murine retinoblastoma tumor suppressor protein (Rb) in mature pancreatic ß-cells has a limited effect on cell proliferation. Here we show that deletion of Rb during embryogenesis in islet progenitors leads to an increase in the neurogenin 3-expressing precursor cell population, which persists in the postnatal period and is associated with increased ß-cell mass in adults. In contrast, Rb-deficient islet precursors, through repression of the cell fate factor aristaless related homeobox, result in decreased α-cell mass. The opposing effect on survival of Rb-deficient α- and ß-cells was a result of opposing effects on p53 in these cell types. As a consequence, loss of Rb in islet precursors led to a reduced α- to ß-cell ratio, leading to improved glucose homeostasis and protection against diabetes.


Assuntos
Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteína do Retinoblastoma/metabolismo , Células-Tronco/metabolismo , Animais , Animais Recém-Nascidos , Sequência de Bases , Diferenciação Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Feminino , Células Secretoras de Glucagon/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Interferência de RNA , Proteína do Retinoblastoma/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Células-Tronco/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Diabetologia ; 58(4): 819-27, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25563725

RESUMO

AIMS/HYPOTHESIS: Nutrient overabundance and diminished physical activity underlie the epidemic of obesity and its consequences of insulin resistance and type 2 diabetes. These same phenomena, obesity and insulin resistance, are also observed in mammals as they ready themselves for the nutrient deprivation of winter, yet their plasma glucose does not rise. Given the role of silent information regulator 2 (Sir2) and its mammalian orthologue, Sirt1, in survival and life extension during energy deprivation, we hypothesised that enhancing its activity may reduce the insensible energy loss engendered by hyperglycaemia and glycosuria. METHODS: At 8 weeks of age, db/db and db/m mice were randomised to receive the SIRT1 activator SRT3025 milled in chow (3.18 g/kg) or regular chow and followed for a further 12 weeks. RESULTS: When compared with vehicle, SIRT1 activation greatly improved glycaemic control, augmented plasma insulin concentrations, increased pancreatic islet beta cell mass and elevated hepatic expression of the beta cell growth factor, betatrophin in db/db mice. Despite the dramatic reduction in hyperglycaemia, db/db mice displayed worsening insulin resistance, diminished physical activity and further weight gain. These findings along with reduced food intake and reduction in body temperature resembled torpor and hibernation. By contrast, SIRT1 activation conferred only minimal changes in non-diabetic db/m mice. CONCLUSIONS/INTERPRETATION: While reducing hyperglycaemia and promoting beta cell expansion, enhancing the activity of SIRT1 facilitates a phenotypic change in a db/db mouse model of diabetes to one that more closely resembles the physiological state of torpor or hibernation.


Assuntos
Anilidas/farmacologia , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/prevenção & controle , Ativadores de Enzimas/farmacologia , Hipoglicemiantes/farmacologia , Obesidade/tratamento farmacológico , Sirtuína 1/metabolismo , Tiazóis/farmacologia , Torpor/efeitos dos fármacos , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Ativação Enzimática , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Insulina/sangue , Resistência à Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos Mutantes , Obesidade/sangue , Obesidade/enzimologia , Obesidade/genética , Obesidade/fisiopatologia , Hormônios Peptídicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
7.
Diabetologia ; 57(12): 2555-65, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25249236

RESUMO

AIMS/HYPOTHESIS: Diabetes mellitus is characterised by beta cell loss and alpha cell expansion. Analogues of glucagon-like peptide-1 (GLP-1) are used therapeutically to antagonise these processes; thus, we hypothesised that the related cell cycle regulators retinoblastoma protein (Rb) and p107 were involved in GLP-1 action. METHODS: We used small interfering RNA and adenoviruses to manipulate Rb and p107 expression in insulinoma and alpha-TC cell lines. In vivo we examined pancreas-specific Rb knockout, whole-body p107 knockout and Rb/p107 double-knockout mice. RESULTS: Rb, but not p107, was downregulated in response to the GLP-1 analogue, exendin-4, in both alpha and beta cells. Intriguingly, this resulted in opposite outcomes of cell cycle arrest in alpha cells but proliferation in beta cells. Overexpression of Rb in alpha and beta cells abolished or attenuated the effects of exendin-4 supporting the important role of Rb in GLP-1 modulation of cell cycling. Similarly, in vivo, Rb, but not p107, deficiency was required for the beta cell proliferative response to exendin-4. Consistent with this finding, Rb, but not p107, was suppressed in islets from humans with diabetes, suggesting the importance of Rb regulation for the compensatory proliferation that occurs under insulin resistant conditions. Finally, while p107 alone did not have an essential role in islet homeostasis, when combined with Rb deletion, its absence potentiated apoptosis of both alpha and beta cells resulting in glucose intolerance and diminished islet mass with ageing. CONCLUSIONS/INTERPRETATION: We found a central role of Rb in the dual effects of GLP-1 in alpha and beta cells. Our findings highlight unique contributions of individual Rb family members to islet cell proliferation and survival.


Assuntos
Ciclo Celular/fisiologia , Sobrevivência Celular/fisiologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína p107 Retinoblastoma-Like/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Exenatida , Células Secretoras de Glucagon/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Camundongos Knockout , Peptídeos/farmacologia , Proteína do Retinoblastoma/genética , Proteína p107 Retinoblastoma-Like/genética , Peçonhas/farmacologia
8.
Diabetologia ; 57(5): 1016-26, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24531222

RESUMO

AIMS/HYPOTHESIS: The growing obesity epidemic necessitates a better understanding of adipocyte biology and its role in metabolism. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway mediates signalling by numerous cytokines and hormones that regulate adipocyte function, illustrating the physiological importance of adipose JAK-STAT. The aim of this study was to investigate potential roles of adipocyte JAK2, an essential player in the JAK-STAT pathway, in adipocyte biology and metabolism. METHODS: We generated adipocyte-specific Jak2 knockout (A-Jak2 KO) mice using the Cre-loxP system with Cre expression driven by the Ap2 (also known as Fabp4) promoter. RESULTS: Starting at 2-3 months of age, male and female A-Jak2 KO mice gradually gained more body weight than control littermates primarily due to increased adiposity. This was associated with reduced energy expenditure in A-Jak2 KO mice. In perigonadal adipose tissue, the expression of numerous genes involved in lipid metabolism was differentially regulated. In addition, adipose tissue from A-Jak2 KO mice displayed impaired lipolysis in response to isoprenaline, growth hormone and leptin stimulation, suggesting that adipose JAK2 directly modulates the lipolytic program. Impaired lipid homeostasis was also associated with disrupted adipokine secretion. Accordingly, while glucose metabolism was normal at 2 months of age, by 5-6 months of age, A-Jak2 KO mice had whole-body insulin resistance. CONCLUSIONS/INTERPRETATION: Our results suggest that adipocyte JAK2 plays a critical role in the regulation of adipocyte biology and whole-body metabolism. Targeting of the JAK-STAT pathway could be a novel therapeutic option for the treatment of obesity and type 2 diabetes.


Assuntos
Adipócitos/metabolismo , Envelhecimento , Resistência à Insulina , Janus Quinase 2/metabolismo , Lipólise , Adipócitos/citologia , Adipocinas , Adiposidade , Animais , Composição Corporal , Peso Corporal , Citocinas/metabolismo , Feminino , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Knockout , Obesidade , Regiões Promotoras Genéticas
9.
Diabetologia ; 57(9): 1889-98, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24981769

RESUMO

AIMS/HYPOTHESIS: Diabetes mellitus represents a significant burden on the health of the global population. Both type 1 and type 2 diabetes share a common feature of a reduction in functional beta cell mass. A newly discovered ubiquitination molecule HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase (HUWE1 [also known as MULE or ARF-BP1]) is a critical regulator of p53-dependent apoptosis. However, its role in islet homeostasis is not entirely clear. METHODS: We generated mice with pancreas-specific deletion of Huwe1 using a Cre-loxP recombination system driven by the Pdx1 promoter (Pdx1cre (+) Huwe1 (fl/fl)) to assess the in vivo role of HUWE1 in the pancreas. RESULTS: Targeted deletion of Huwe1 in the pancreas preferentially activated p53-mediated beta cell apoptosis, leading to reduced beta cell mass and diminished insulin exocytosis. These defects were aggravated by ageing, with progressive further decline in insulin secretion and glucose homeostasis in older mice. Intriguingly, Huwe1 deletion provided protection against genotoxicity, such that Pdx1cre (+) Huwe1 (fl/fl) mice were resistant to multiple-low-dose-streptozotocin-induced beta cell apoptosis and diabetes. CONCLUSION/INTERPRETATION: HUWE1 expression in the pancreas is essential in determining beta cell mass. Furthermore, HUWE1 demonstrated divergent roles in regulating beta cell apoptosis depending on physiological or genotoxic conditions.


Assuntos
Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Mutantes , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases/genética
10.
J Biol Chem ; 287(13): 10277-10288, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22275361

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is becoming the leading cause of chronic liver disease and is now considered to be the hepatic manifestation of the metabolic syndrome. However, the role of steatosis per se and the precise factors required in the progression to steatohepatitis or insulin resistance remain elusive. The JAK-STAT pathway is critical in mediating signaling of a wide variety of cytokines and growth factors. Mice with hepatocyte-specific deletion of Janus kinase 2 (L-JAK2 KO mice) develop spontaneous steatosis as early as 2 weeks of age. In this study, we investigated the metabolic consequences of jak2 deletion in response to diet-induced metabolic stress. To our surprise, despite the profound hepatosteatosis, deletion of hepatic jak2 did not sensitize the liver to accelerated inflammatory injury on a prolonged high fat diet (HFD). This was accompanied by complete protection against HFD-induced whole-body insulin resistance and glucose intolerance. Improved glucose-stimulated insulin secretion and an increase in ß-cell mass were also present in these mice. Moreover, L-JAK2 KO mice had progressively reduced adiposity in association with blunted hepatic growth hormone signaling. These mice also exhibited increased resting energy expenditure on both chow and high fat diet. In conclusion, our findings indicate a key role of hepatic JAK2 in metabolism such that its absence completely arrests steatohepatitis development and confers protection against diet-induced systemic insulin resistance and glucose intolerance.


Assuntos
Gorduras na Dieta/efeitos adversos , Fígado Gorduroso/enzimologia , Intolerância à Glucose/enzimologia , Hepatócitos/enzimologia , Janus Quinase 2/metabolismo , Adiposidade/efeitos dos fármacos , Adiposidade/genética , Animais , Gorduras na Dieta/farmacologia , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Deleção de Genes , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/genética , Intolerância à Glucose/patologia , Hepatócitos/patologia , Resistência à Insulina/genética , Janus Quinase 2/genética , Camundongos , Camundongos Knockout
11.
Diabetes ; 72(12): 1751-1765, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37699387

RESUMO

Caspases are cysteine-aspartic proteases that were initially discovered to play a role in apoptosis. However, caspase 8, in particular, also has additional nonapoptotic roles, such as in inflammation. Adipocyte cell death and inflammation are hypothesized to be initiating pathogenic factors in type 2 diabetes. Here, we examined the pleiotropic role of caspase 8 in adipocytes and obesity-associated insulin resistance. Caspase 8 expression was increased in adipocytes from mice and humans with obesity and insulin resistance. Treatment of 3T3-L1 adipocytes with caspase 8 inhibitor Z-IETD-FMK decreased both death receptor-mediated signaling and targets of nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling. We generated novel adipose tissue and adipocyte-specific caspase 8 knockout mice (aP2Casp8-/- and adipoqCasp8-/-). Both males and females had improved glucose tolerance in the setting of high-fat diet (HFD) feeding. Knockout mice also gained less weight on HFD, with decreased adiposity, adipocyte size, and hepatic steatosis. These mice had decreased adipose tissue inflammation and decreased activation of canonical and noncanonical NF-κB signaling. Furthermore, they demonstrated increased energy expenditure, core body temperature, and UCP1 expression. Adipocyte-specific activation of Ikbkb or housing mice at thermoneutrality attenuated improvements in glucose tolerance. These data demonstrate an important role for caspase 8 in mediating adipocyte cell death and inflammation to regulate glucose and energy homeostasis. ARTICLE HIGHLIGHTS: Caspase 8 is increased in adipocytes from mice and humans with obesity and insulin resistance. Knockdown of caspase 8 in adipocytes protects mice from glucose intolerance and weight gain on a high-fat diet. Knockdown of caspase 8 decreases Fas signaling, as well as canonical and noncanonical nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling in adipose tissue. Improved glucose tolerance occurs via reduced activation of NF-κB signaling and via induction of UCP1 in adipocytes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Masculino , Feminino , Animais , Camundongos , NF-kappa B/metabolismo , Resistência à Insulina/genética , Caspase 8/genética , Caspase 8/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Knockout , Adipócitos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Glucose/metabolismo , Apoptose/genética
12.
Lab Invest ; 91(4): 527-38, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21242957

RESUMO

Type 2 diabetes is hallmarked by insulin resistance and insufficient ß-cell function. Islets of type 2 diabetes patients have been shown to have decreased hypoxia-inducible factor (HIF)-1α/ß expression. Target genes of the HIF pathway are involved in angiogenesis, survival, proliferation, and energy metabolism, and von Hippel-Lindau protein (VHL) is a negative regulator of this pathway. We hypothesized that increased HIF-mediated gene transcription by VHL deletion in the ß-cells would increase ß-cell mass and function. We generated ß-cell-specific VHL-knockout mice using the Cre-loxP recombination system driven by the rat insulin promoter to assess the role of VHL in glucose homeostasis and ß-cell function. VHL deletion in the pancreatic ß-cells led to impaired glucose tolerance due to defects in glucose-stimulated insulin secretion and ß-cell mass with age. VHL-knockout islets had decreased GLUT2, but increased glucose transporter 1 and vascular endothelial growth factor expression. Furthermore, there were significant aberrations in islet morphology in the VHL-knockout mice, likely due to increased islet vasculature. Given that erythropoietin (EPO) is a target gene of the HIF pathway, which is not expressed in islets, we tested whether activating EPO signaling by systemic administration with recombinant human EPO (rHuEPO) can overcome the ß-cell defects that occurred with VHL loss. We observed improved glucose tolerance and restoration of GLUT2 expression in VHL-deficient ß-cells in response to rHuEPO. Contrary to our hypothesis, loss of VHL and increased transcription of HIF-target genes resulted in impaired ß-cell function and mass, which can be overcome with exogenous EPO. Our results indicate a critical role for VHL in ß-cell function and mass, and that EPO administration improved ß-cell function making it a potential strategy for diabetes treatment.


Assuntos
Envelhecimento , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Eritropoetina/farmacologia , Glucose/metabolismo , Intolerância à Glucose , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Homeostase , Humanos , Fator 1 Induzível por Hipóxia/farmacologia , Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Knockout , Neovascularização Patológica/etiologia , Regiões Promotoras Genéticas , Ratos , Proteínas Recombinantes , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética
13.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33682794

RESUMO

Osteoclasts are specialized cells of the hematopoietic lineage that are responsible for bone resorption and play a critical role in musculoskeletal disease. JAK2 is a key mediator of cytokine and growth factor signaling; however, its role in osteoclasts in vivo has yet to be investigated. To elucidate the role of JAK2 in osteoclasts, we generated an osteoclast-specific JAK2-KO (Oc-JAK2-KO) mouse using the Cre/Lox-P system. Oc-JAK2-KO mice demonstrated marked postnatal growth restriction; however, this was not associated with significant changes in bone density, microarchitecture, or strength, indicating that the observed phenotype was not due to alterations in canonical osteoclast function. Interestingly, Oc-JAK2-KO mice had reduced osteoclast-specific expression of IGF1, suggesting a role for osteoclast-derived IGF1 in determination of body size. To directly assess the role of osteoclast-derived IGF1, we generated an osteoclast-specific IGF1-KO mouse, which showed a similar growth-restricted phenotype. Lastly, overexpression of circulating IGF1 by human transgene rescued the growth defects in Oc-JAK2-KO mice, in keeping with a causal role of IGF1 in these models. Together, our data show a potentially novel role for Oc-JAK2 and IGF1 in the determination of body size, which is independent of osteoclast resorptive function.


Assuntos
Tamanho Corporal , Osso e Ossos , Fator de Crescimento Insulin-Like I/metabolismo , Janus Quinase 2/metabolismo , Osteoclastos/metabolismo , Animais , Tamanho Corporal/genética , Densidade Óssea , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Feminino , Fêmur/metabolismo , Humanos , Janus Quinase 2/genética , Masculino , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Transdução de Sinais
14.
Endocrinology ; 162(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647942

RESUMO

Atherosclerosis is the leading cause of cardiovascular disease (CVD), with distinct sex-specific pathogenic mechanisms that are poorly understood. Aging, a major independent risk factor for atherosclerosis, correlates with a decline in circulating insulin-like growth factor-1 (IGF-1). However, the precise effects of Igf1 on atherosclerosis remain unclear. In the present study, we assessed the essential role of hepatic Igf1, the major source of circulating IGF-1, in atherogenesis. We generated hepatic Igf1-deficient atherosclerosis-prone apolipoprotein E (ApoE)-null mice (L-Igf1-/-ApoE-/-) using the Cre-loxP system driven by the Albumin promoter. Starting at 6 weeks of age, these mice and their littermate controls, separated into male and female groups, were placed on an atherogenic diet for 18 to 19 weeks. We show that hepatic Igf1-deficiency led to atheroprotection with reduced plaque macrophages in females, without significant effects in males. This protection from atherosclerosis in females was associated with increased subcutaneous adiposity and with impaired lipolysis. Moreover, this impaired lipid homeostasis was associated with disrupted adipokine secretion with reduced circulating interleukin-6 (IL-6) levels. Together, our data show that endogenous hepatic Igf1 plays a sex-specific regulatory role in atherogenesis, potentially through athero-promoting effects of adipose tissue-derived IL-6 secretion. These data provide potential novel sex-specific mechanisms in the pathogenesis of atherosclerosis.


Assuntos
Aterosclerose/prevenção & controle , Fator de Crescimento Insulin-Like I/deficiência , Fígado/metabolismo , Tecido Adiposo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Feminino , Fator de Crescimento Insulin-Like I/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Sci Rep ; 11(1): 4723, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633277

RESUMO

Inflammation is a key contributor to atherosclerosis with macrophages playing a pivotal role through the induction of oxidative stress and cytokine/chemokine secretion. DJ1, an anti-oxidant protein, has shown to paradoxically protect against chronic and acute inflammation. However, the role of DJ1 in atherosclerosis remains elusive. To assess the role of Dj1 in atherogenesis, we generated whole-body Dj1-deficient atherosclerosis-prone Apoe null mice (Dj1-/-Apoe-/-). After 21 weeks of atherogenic diet, Dj1-/- Apoe-/-mice were protected against atherosclerosis with significantly reduced plaque macrophage content. To assess whether haematopoietic or parenchymal Dj1 contributed to atheroprotection in Dj1-deficient mice, we performed bone-marrow (BM) transplantation and show that Dj1-deficient BM contributed to their attenuation in atherosclerosis. To assess cell-autonomous role of macrophage Dj1 in atheroprotection, BM-derived macrophages from Dj1-deficient mice and Dj1-silenced macrophages were assessed in response to oxidized low-density lipoprotein (oxLDL). In both cases, there was an enhanced anti-inflammatory response which may have contributed to atheroprotection in Dj1-deficient mice. There was also an increased trend of plasma DJ-1 levels from individuals with ischemic heart disease compared to those without. Our findings indicate an atheropromoting role of Dj1 and suggests that targeting Dj1 may provide a novel therapeutic avenue for atherosclerosis treatment or prevention.


Assuntos
Aterosclerose/genética , Inflamação/genética , Proteína Desglicase DJ-1/genética , Animais , Células Cultivadas , Feminino , Deleção de Genes , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fatores de Proteção , Células RAW 264.7
16.
Mol Metab ; 39: 101006, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32360427

RESUMO

OBJECTIVE: Discoidin domain receptor 1 (DDR1) is a collagen binding receptor tyrosine kinase implicated in atherosclerosis, fibrosis, and cancer. Our previous research showed that DDR1 could regulate smooth muscle cell trans-differentiation, fibrosis and calcification in the vascular system in cardiometabolic disease. This spectrum of activity led us to question whether DDR1 might also regulate adipose tissue fibrosis and remodeling. METHODS: We have used a diet-induced mouse model of cardiometabolic disease to determine whether DDR1 deletion impacts upon adipose tissue remodeling and metabolic dysfunction. Mice were fed a high fat diet (HFD) for 12 weeks, followed by assessment of glucose and insulin tolerance, respiration via indirect calorimetry, and brown fat activity by FDG-PET. RESULTS: Feeding HFD induced DDR1 expression in white adipose tissue, which correlated with adipose tissue expansion and fibrosis. Ddr1-/- mice fed an HFD had improved glucose tolerance, reduced body fat, and increased brown fat activity and energy expenditure compared to Ddr1+/+ littermate controls. HFD-fed DDR1-/- mice also had reduced fibrosis, smaller adipocytes with multilocular lipid droplets, and increased UCP-1 expression characteristic of beige fat formation in subcutaneous adipose tissue. In vitro, studying C3H10T1/2 cells stimulated to differentiate, DDR1 inhibition caused a shift from white to beige adipocyte differentiation, whereas DDR1 expression was increased with TGFß-mediated pro-fibrotic differentiation. CONCLUSION: This study is the first to identify a role for DDR1 as a driver of adipose tissue fibrosis and suppressor of beneficial beige fat formation.


Assuntos
Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Receptor com Domínio Discoidina 1/genética , Metabolismo Energético , Deleção de Genes , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Animais , Calorimetria , Dieta Hiperlipídica/efeitos adversos , Receptor com Domínio Discoidina 1/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fibrose , Imuno-Histoquímica , Síndrome Metabólica/diagnóstico , Camundongos , Camundongos Knockout , Tomografia por Emissão de Pósitrons , RNA Mensageiro/genética , Gordura Subcutânea/metabolismo , Tomografia Computadorizada por Raios X
17.
Am J Physiol Endocrinol Metab ; 297(6): E1304-12, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19755672

RESUMO

Fas/Fas ligand belongs to the tumor necrosis factor superfamily of receptors/ligands and is best known for its role in apoptosis. However, recent evidence supports its role in other cellular responses, including proliferation and survival. Although Fas has been implicated as an essential mediator of beta-cell death in the pathogenesis of type 1 diabetes, the essential role of Fas specifically in pancreatic beta-cells has been found to be controversial. Moreover, the role of Fas on beta-cell homeostasis and function is not clear. The objective of this study is to determine the role of Fas specifically in beta-cells under both physiological and diabetes models. Mice with Fas deletion specifically in the beta-cells were generated using the Cre-loxP system. Cre-mediated Fas deletion was under the control of the rat insulin promoter. Absence of Fas in beta-cells leads to complete protection against FasL-induced cell death. However, Fas is not essential in determining beta-cell mass or susceptibility to streptozotocin- or HFD-induced diabetes. Importantly, Fas deletion in beta-cells leads to increased p65 expression, enhanced glucose tolerance, and glucose-stimulated insulin secretion, with increased exocytosis as manifested by increased changes in membrane capacitance and increased expression of Syntaxin1A, VAMP2, and munc18a. Together, our study shows that Fas in the beta-cells indeed plays an essential role in the canonical death receptor-mediated apoptosis but is not essential in regulating beta-cell mass or diabetes development. However, beta-cell Fas is critical in the regulation of glucose homeostasis through regulation of the exocytosis machinery.


Assuntos
Diabetes Mellitus/metabolismo , Proteína Ligante Fas/deficiência , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptor fas/metabolismo , Animais , Apoptose/fisiologia , Proteína Ligante Fas/metabolismo , Feminino , Citometria de Fluxo , Glucose/metabolismo , Teste de Tolerância a Glucose , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Proteínas Munc18/metabolismo , Técnicas de Patch-Clamp , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , eIF-2 Quinase/metabolismo
18.
Endocrinology ; 149(9): 4382-6, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18499759

RESUMO

The GH/IGF-I axis plays a critical role in mammalian body growth. GH is secreted by the anterior pituitary, and its actions are primarily mediated by IGF-I that is secreted by the liver and other tissues. Local and circulating IGF-I action is largely mediated by the phosphoinositide 3-kinase signaling pathway, and phosphatase with tensin homology (PTEN) is a potent negative regulator of this pathway. Here we show that RIPcre+Ptenfl/fl mice, which exhibit PTEN deletion in insulin-transcribing neurons of the hypothalamus in addition to pancreatic beta-cells, result in a small-body phenotype that is associated with an unexpected increase in serum IGF-I levels. We tested whether exogenous GH can override the growth defect in RIPcre+Ptenfl/fl mice. Our results showed no significant difference in their growth between the RIPcre+Ptenfl/fl mice injected with GH or vehicle. Together, PTEN in the hypothalamic insulin-transcribing neurons plays an essential role in body size determination, and systemic GH cannot overcome the growth defect in these mice.


Assuntos
Transtornos do Crescimento/tratamento farmacológico , Transtornos do Crescimento/genética , Hormônio do Crescimento/uso terapêutico , Hipotálamo/metabolismo , PTEN Fosfo-Hidrolase/genética , Animais , Tamanho Corporal/genética , Resistência a Medicamentos/genética , Feminino , Deleção de Genes , Transtornos do Crescimento/patologia , Insulina/genética , Insulina/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/análise , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/metabolismo , RNA Mensageiro/metabolismo , Falha de Tratamento
19.
Nat Commun ; 8: 14360, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165007

RESUMO

Focal adhesion kinase (FAK) plays a central role in integrin signalling, which regulates growth and survival of tumours. Here we show that FAK protein levels are increased in adipose tissue of insulin-resistant obese mice and humans. Disruption of adipocyte FAK in mice or in 3T3 L1 cells decreases adipocyte survival. Adipocyte-specific FAK knockout mice display impaired adipose tissue expansion and insulin resistance on prolonged metabolic stress from a high-fat diet or when crossed on an obese db/db or ob/ob genetic background. Treatment of these mice with a PPARγ agonist does not restore adiposity or improve insulin sensitivity. In contrast, inhibition of apoptosis, either genetically or pharmacologically, attenuates adipocyte death, restores normal adiposity and improves insulin sensitivity. Together, these results demonstrate that FAK is required for adipocyte survival and maintenance of insulin sensitivity, particularly in the context of adipose tissue expansion as a result of caloric excess.


Assuntos
Adipócitos/fisiologia , Quinase 1 de Adesão Focal/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Células 3T3-L1 , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Adiposidade/efeitos dos fármacos , Adiposidade/genética , Adulto , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Quinase 1 de Adesão Focal/genética , Humanos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Pessoa de Meia-Idade , Obesidade/etiologia , Obesidade/fisiopatologia , PPAR gama/agonistas , Cultura Primária de Células , Rosiglitazona , Transdução de Sinais/fisiologia , Tiazolidinedionas/farmacologia
20.
Sci Rep ; 7(1): 7653, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794431

RESUMO

During obesity, macrophages can infiltrate metabolic tissues, and contribute to chronic low-grade inflammation, and mediate insulin resistance and diabetes. Recent studies have elucidated the metabolic role of JAK2, a key mediator downstream of various cytokines and growth factors. Our study addresses the essential role of macrophage JAK2 in the pathogenesis to obesity-associated inflammation and insulin resistance. During high-fat diet (HFD) feeding, macrophage-specific JAK2 knockout (M-JAK2-/-) mice gained less body weight compared to wildtype littermate control (M-JAK2+/+) mice and were protected from HFD-induced systemic insulin resistance. Histological analysis revealed smaller adipocytes and qPCR analysis showed upregulated expression of some adipogenesis markers in visceral adipose tissue (VAT) of HFD-fed M-JAK2-/- mice. There were decreased crown-like structures in VAT along with reduced mRNA expression of some macrophage markers and chemokines in liver and VAT of HFD-fed M-JAK2-/- mice. Peritoneal macrophages from M-JAK2-/- mice and Jak2 knockdown in macrophage cell line RAW 264.7 also showed lower levels of chemokine expression and reduced phosphorylated STAT3. However, leptin-dependent effects on augmenting chemokine expression in RAW 264.7 cells did not require JAK2. Collectively, our findings show that macrophage JAK2 deficiency improves systemic insulin sensitivity and reduces inflammation in VAT and liver in response to metabolic stress.


Assuntos
Dieta Hiperlipídica , Inflamação/etiologia , Janus Quinase 2/deficiência , Macrófagos/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Expressão Gênica , Hipertrofia , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina/genética , Gordura Intra-Abdominal/metabolismo , Fígado/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA