Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(25): 9716-20, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22679292

RESUMO

Smooth wrinkles and sharply crumpled regions are familiar motifs in biological or synthetic sheets, such as rapidly growing plant leaves and crushed foils. Previous studies have addressed both morphological types, but the generic route whereby a featureless sheet develops a complex shape remains elusive. Here we show that this route proceeds through an unusual sequence of distinct symmetry-breaking instabilities. The object of our study is an ultrathin circular sheet stretched over a liquid drop. As the curvature is gradually increased, the surface tension stretching the sheet over the drop causes compression along circles of latitude. The compression is relieved first by a transition into a wrinkle pattern, and then into a crumpled state via a continuous transition. Our data provide conclusive evidence that wrinkle patterns in highly bendable sheets are not described by classical buckling methods, but rather by a theory which assumes that wrinkles completely relax the compressive stress. With this understanding we recognize the observed sequence of transitions as distinct symmetry breakings of the shape and the stress field. The axial symmetry of the shape is broken upon wrinkling but the underlying stress field preserves this symmetry. Thus, the wrinkle-to-crumple transition marks symmetry-breaking of the stress in highly bendable sheets. By contrast, other instabilities of sheets, such as blistering and cracking, break the homogeneity of shape and stress simultaneously. The onset of crumpling occurs when the wrinkle pattern grows to half the sheet's radius, suggesting a geometric, material-independent origin for this transition.

2.
Proc Natl Acad Sci U S A ; 108(45): 18227-32, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22042841

RESUMO

The buckling and wrinkling of thin films has recently seen a surge of interest among physicists, biologists, mathematicians, and engineers. This activity has been triggered by the growing interest in developing technologies at ever-decreasing scales and the resulting necessity to control the mechanics of tiny structures, as well as by the realization that morphogenetic processes, such as the tissue-shaping instabilities occurring in animal epithelia or plant leaves, often emerge from mechanical instabilities of cell sheets. Although the most basic buckling instability of uniaxially compressed plates was understood by Euler more than two centuries ago, recent experiments on nanometrically thin (ultrathin) films have shown significant deviations from predictions of standard buckling theory. Motivated by this puzzle, we introduce here a theoretical model that allows for a systematic analysis of wrinkling in sheets far from their instability threshold. We focus on the simplest extension of Euler buckling that exhibits wrinkles of finite length--a sheet under axisymmetric tensile loads. The first study of this geometry, which is attributed to Lamé, allows us to construct a phase diagram that demonstrates the dramatic variation of wrinkling patterns from near-threshold to far-from-threshold conditions. Theoretical arguments and comparison to experiments show that the thinner the sheet is, the smaller is the compressive load above which the far-from-threshold regime emerges. This observation emphasizes the relevance of our analysis for nanomechanics applications.

3.
Phys Rev Lett ; 106(7): 074301, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21405518

RESUMO

We study the behavior of thin elastic sheets that are bent and strained under a weak, smooth confinement. We show that the emerging shapes exhibit the coexistence of two types of domains. A focused-stress patch is subject to a geometric, piecewise-inextensibility constraint, whereas a diffuse-stress region is characterized by a mechanical constraint-the dominance of a single component of the stress tensor. We discuss the implications of our findings for the analysis of elastic sheets under various types of forcing.

4.
Phys Rev Lett ; 104(3): 034504, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20366648

RESUMO

We simulate the impact of a viscous liquid drop onto a smooth dry solid surface. As in experiments, when ambient air effects are negligible, impact flattens the falling drop without producing a splash. The no-slip boundary condition at the wall produces a boundary layer inside the liquid. Later, the flattening surface of the drop traces out the boundary layer. As a result, the eventual shape of the drop is a "pancake" of uniform thickness except at the rim, where surface tension effects are significant. The thickness of the pancake is simply the height where the drop surface first collides with the boundary layer.

5.
Phys Rev Lett ; 98(13): 133601, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17501199

RESUMO

Using experiments and theory, we show that light scattering by inhomogeneities in the index of refraction of a fluid can drive a large-scale flow. The experiment uses a near-critical, phase-separated liquid, which experiences large fluctuations in its index of refraction. A laser beam traversing the liquid produces a interface deformation on the scale of the experimental setup and can cause a liquid jet to form. We demonstrate that the deformation is produced by a scattering-induced flow by obtaining good agreements between the measured deformations and those calculated assuming this mechanism.

6.
Phys Rev Lett ; 93(8): 084101, 2004 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-15447190

RESUMO

We demonstrate generalized synchronization in a spatiotemporal chaotic system, a liquid crystal spatial light modulator with optoelectronic feedback.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA