Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Phys Med Biol ; 69(8)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38417178

RESUMO

Objective.Alternating electric fields (AEF) therapy is a treatment modality for patients with glioblastoma. Tumor characteristics such as size, location, and extent of peritumoral edema may affect the AEF strength and distribution. We evaluated the sensitivity of the AEFs in a realistic 3D rat glioma model with respect to these properties.Approach.The electric properties of the peritumoral edema were varied based on calculated and literature-reported values. Models with different tumor composition, size, and location were created. The resulting AEFs were evaluated in 3D rat glioma models.Main results.In all cases, a pair of 5 mm diameter electrodes induced an average field strength >1 V cm-1. The simulation results showed that a negative relationship between edema conductivity and field strength was found. As the tumor core size was increased, the average field strength increased while the fraction of the shell achieving >1.5 V cm-1decreased. Increasing peritumoral edema thickness decreased the shell's mean field strength. Compared to rostrally/caudally, shifting the tumor location laterally/medially and ventrally (with respect to the electrodes) caused higher deviation in field strength.Significance.This study identifies tumor properties that are key drivers influencing AEF strength and distribution. The findings might be potential preclinical implications.


Assuntos
Neoplasias Encefálicas , Terapia por Estimulação Elétrica , Glioblastoma , Glioma , Linfocinas , Humanos , Ratos , Animais , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Terapia por Estimulação Elétrica/métodos , Glioma/terapia , Glioblastoma/patologia
2.
Phys Med Biol ; 68(20)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37703902

RESUMO

Objective.Application of alternating electrical fields (AEFs) in the kHz range is an established treatment modality for primary and recurrent glioblastoma. Preclinical studies would enable innovations in treatment monitoring and efficacy, which could then be translated to benefit patients. We present a practical translational process converting image-based data into 3D rat head models for AEF simulations and study its sensitivity to parameter choices.Approach.Five rat head models composed of up to 7 different tissue types were created, and relative permittivity and conductivity of individual tissues obtained from the literature were assigned. Finite element analysis was used to model the AEF strength and distribution in the models with different combinations of head tissues, a virtual tumor, and an electrode pair.Main results.The simulations allowed for a sensitivity analysis of the AEF distribution with respect to different tissue combinations and tissue parameter values.Significance.For a single pair of 5 mm diameter electrodes, an average AEF strength inside the tumor exceeded 1.5 V cm-1, expected to be sufficient for a relevant therapeutic outcome. This study illustrates a robust and flexible approach for simulating AEF in different tissue types, suitable for preclinical studies in rodents and translatable to clinical use.


Assuntos
Terapia por Estimulação Elétrica , Glioblastoma , Humanos , Ratos , Animais , Glioblastoma/patologia , Eletricidade , Condutividade Elétrica , Terapia por Estimulação Elétrica/métodos
3.
Bioelectrochemistry ; 149: 108287, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36306728

RESUMO

Exposing cancer cells to alternating electric fields of 100-300 kHz frequency and 1-4 V/cm strength has been shown to significantly reduce cancer growth in cell culture and in human patients. This form of anti-cancer therapy is more commonly referred to as tumor treating fields (TTFields), a novel treatment modality that has been approved by the U.S. Food and Drug Administration for use in patients with glioblastoma and malignant pleural mesothelioma. Pivotal trials in other solid organ cancer trials are underway. In regards to overall survival, TTFields alone is comparable to chemotherapy alone in recurrent glioblastoma. However, when combined with adjuvant chemotherapy, TTFields prolong median survival by 4.9 months in newly-diagnosed glioblastoma. TTFields hold promise as a therapeutic approach to numerous solid organ cancers. This review summarizes the current status of TTFields research at the preclinical level, highlighting recent aspects of a relatively complex working hypothesis. In addition, we point out the gaps between limited preclinical in vivo studies and the available clinical data. To date, no customized system for TTFields delivery in rodent models of glioblastoma has been presented. We aim to motivate the expansion of TTFields preclinical research and facilitate the availability of suitable hardware, to ultimately improve outcomes in patients with cancer.


Assuntos
Neoplasias Encefálicas , Terapia por Estimulação Elétrica , Glioblastoma , Humanos , Glioblastoma/terapia , Terapia Combinada , Eletricidade
4.
IEEE Access ; 9: 25946-25958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996341

RESUMO

Proton CT (pCT) is a promising new imaging technique that can reconstruct relative stopping power (RSP) more accurately than x-ray CT in each cubic millimeter voxel of the patient. This, in turn, will result in better proton range accuracy and, therefore, smaller planned tumor volumes (PTV). The hardware description and some reconstructed images have previously been reported. In a series of two contributions, we focus on presenting the software algorithms that convert pCT detector data to the final reconstructed pCT images for application in proton treatment planning. There were several options on how to accomplish this, and we will describe our solutions at each stage of the data processing chain. In the first paper of this series, we present the data acquisition with the pCT tracking and energy-range detectors and how the data are preprocessed, including the conversion to the well-formatted track information from tracking data and water-equivalent path length from the data of a calibrated multi-stage energy-range detector. These preprocessed data are then used for the initial image formation with an FDK cone-beam CT algorithm. The output of data acquisition, preprocessing, and FDK reconstruction is presented along with illustrative imaging results for two phantoms, including a pediatric head phantom. The second paper in this series will demonstrate the use of iterative solvers in conjunction with the superiorization methodology to further improve the images resulting from the upfront FDK image reconstruction and the implementation of these algorithms on a hybrid CPU/GPU computer cluster.

5.
IEEE Trans Med Imaging ; 39(2): 294-307, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30998460

RESUMO

Previous work has shown that total variation superiorization (TVS) improves reconstructed image quality in proton computed tomography (pCT). The structure of the TVS algorithm has evolved since then and this paper investigated if this new algorithmic structure provides additional benefits to pCT image quality. Structural and parametric changes introduced to the original TVS algorithm included: (1) inclusion or exclusion of TV reduction requirement, (2) a variable number, N , of TV perturbation steps per feasibility-seeking iteration, and (3) introduction of a perturbation kernel . The structural change of excluding the TV reduction requirement check tended to have a beneficial effect for 3 ≤ N ≤ 6 and allows full parallelization of the TVS algorithm. Repeated perturbations per feasibility-seeking iterations reduced total variation (TV) and material dependent standard deviations for 3 ≤ N ≤ 6 . The perturbation kernel α , effectively equal to α = 0.5 in the original TVS algorithm, reduced TV and standard deviations as α was increased beyond α = 0.5 , but negatively impacted reconstructed relative stopping power (RSP) values for . The reductions in TV and standard deviations allowed feasibility-seeking with a larger relaxation parameter λ than previously used, without the corresponding increases in standard deviations experienced with the original TVS algorithm. This paper demonstrates that the modifications related to the evolution of the original TVS algorithm provide benefits in terms of both pCT image quality and computational efficiency for appropriately chosen parameter values.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia/métodos , Algoritmos , Cabeça/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Prótons
6.
AIP Conf Proc ; 21602019.
Artigo em Inglês | MEDLINE | ID: mdl-37153354

RESUMO

Robust methods, such as Tikhonov regularization and Bounded data uncertainty, have been used extensively in relatively small problems involving dense matrices for many decades, but have not been used in large-scale iterative methods for image reconstruction in particle imaging until recently. In this case, robust methods may allow more accurate reconstruction of images in the presence of errors of both the energy measurement of the protons and ions but also in the estimated path taken by the proton or ion through the object. Robust systems may also be used when entire blocks of data are missing, or in low-dose reconstructions using a very small number of particles without substantial loss of image quality. In this contribution, we demonstrate that robust methods show great promise in proton/ion (particle) computed tomography (pCT), and, for the first time, that they can be proven to converge. Thus, the convergence of robust methods as well as benefits for reconstruction in uncertain systems is shown to constitute the main advantage for pCT reconstruction.

7.
Astrobiology ; 19(9): 1075-1102, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31335163

RESUMO

Microbial life permeates Earth's critical zone and has likely inhabited nearly all our planet's surface and near subsurface since before the beginning of the sedimentary rock record. Given the vast time that Earth has been teeming with life, do astrobiologists truly understand what geological features untouched by biological processes would look like? In the search for extraterrestrial life in the Universe, it is critical to determine what constitutes a biosignature across multiple scales, and how this compares with "abiosignatures" formed by nonliving processes. Developing standards for abiotic and biotic characteristics would provide quantitative metrics for comparison across different data types and observational time frames. The evidence for life detection falls into three categories of biosignatures: (1) substances, such as elemental abundances, isotopes, molecules, allotropes, enantiomers, minerals, and their associated properties; (2) objects that are physical features such as mats, fossils including trace-fossils and microbialites (stromatolites), and concretions; and (3) patterns, such as physical three-dimensional or conceptual n-dimensional relationships of physical or chemical phenomena, including patterns of intermolecular abundances of organic homologues, and patterns of stable isotopic abundances between and within compounds. Five key challenges that warrant future exploration by the astrobiology community include the following: (1) examining phenomena at the "right" spatial scales because biosignatures may elude us if not examined with the appropriate instrumentation or modeling approach at that specific scale; (2) identifying the precise context across multiple spatial and temporal scales to understand how tangible biosignatures may or may not be preserved; (3) increasing capability to mine big data sets to reveal relationships, for example, how Earth's mineral diversity may have evolved in conjunction with life; (4) leveraging cyberinfrastructure for data management of biosignature types, characteristics, and classifications; and (5) using three-dimensional to n-D representations of biotic and abiotic models overlain on multiple overlapping spatial and temporal relationships to provide new insights.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Planetas , Ciclo do Carbono , Planeta Terra , Compostos Férricos/análise , Minerais/análise , Ciclo do Nitrogênio , Incerteza
8.
Technol Cancer Res Treat ; 14(3): 326-33, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25782189

RESUMO

Image registration techniques based on anatomical features can serve to automate patient alignment for intracranial radiosurgery procedures in an effort to improve the accuracy and efficiency of the alignment process as well as potentially eliminate the need for implanted fiducial markers. To explore this option, four two-dimensional (2D) image registration algorithms were analyzed: the phase correlation technique, mutual information (MI) maximization, enhanced correlation coefficient (ECC) maximization, and the iterative closest point (ICP) algorithm. Digitally reconstructed radiographs from the treatment planning computed tomography scan of a human skull were used as the reference images, while orthogonal digital x-ray images taken in the treatment room were used as the captured images to be aligned. The accuracy of aligning the skull with each algorithm was compared to the alignment of the currently practiced procedure, which is based on a manual process of selecting common landmarks, including implanted fiducials and anatomical skull features. Of the four algorithms, three (phase correlation, MI maximization, and ECC maximization) demonstrated clinically adequate (ie, comparable to the standard alignment technique) translational accuracy and improvements in speed compared to the interactive, user-guided technique; however, the ICP algorithm failed to give clinically acceptable results. The results of this work suggest that a combination of different algorithms may provide the best registration results. This research serves as the initial groundwork for the translation of automated, anatomy-based 2D algorithms into a real-world system for 2D-to-2D image registration and alignment for intracranial radiosurgery. This may obviate the need for invasive implantation of fiducial markers into the skull and may improve treatment room efficiency and accuracy.


Assuntos
Radiocirurgia/métodos , Crânio/diagnóstico por imagem , Crânio/cirurgia , Algoritmos , Marcadores Fiduciais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Técnica de Subtração , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA