RESUMO
Synthetic modification of cyclosporin A at P3-P4 positions led to the discovery of NIM258, a next generation cyclophilin inhibitor with excellent anti-hepatitis C virus potency, with decreased transporter inhibition, and pharmacokinetics suitable for coadministration with other drugs. Herein is disclosed the evolution of the synthetic strategy to from the original medicinal chemistry route, designed for late diversification, to a convergent and robust development synthesis. The chiral centers in the P4 fragment were constructed by an asymmetric chelated Claisen rearrangement in the presence of quinidine as the chiral ligand. Identification of advanced crystalline intermediates enabled practical supply of key intermediates. Finally, macrocyclization was carried out at 10% weight concentration by a general and unconventional "slow release" concept.
Assuntos
Antivirais/química , Ciclosporina/química , Hepacivirus/fisiologia , Antivirais/síntese química , Antivirais/farmacologia , Ciclização , Ciclosporina/síntese química , Ciclosporina/farmacologia , Dipeptídeos/síntese química , Dipeptídeos/química , Desenho de Fármacos , Quinidina/química , Estereoisomerismo , Replicação Viral/efeitos dos fármacosRESUMO
The optimisation of two series of 4-hydroxybenzothiazolone derived ß2-adrenoceptor agonists, bearing α-substituted cyclopentyl and ß-phenethyl amino-substituents, as inhaled long-acting bronchodilators is described. Analogues were selected for synthesis using a lipophilicity based hypothesis to achieve the targeted rapid onset of action in combination with a long duration of action. The profiling of the two series led to identification of the α-substituted cyclopentyl analogue 2 as the optimal compound with a comparable profile to the inhaled once-daily long-acting ß2-adrenoceptor agonist indacaterol. On the basis of these data 2 was promoted as the backup development candidate to indacaterol from the Novartis LABA project.