Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552736

RESUMO

Light and temperature sensing are important features of many organisms. Light may provide energy but may also be used by non-photosynthetic organisms for orientation in the environment. Recent evidence suggests that plant and fungal phytochrome and plant phototropin serve dual functions as light and temperature sensors. Here we characterized the fungal LOV-domain blue-light receptor LreA of Alternaria alternata and show that it predominantly contains FAD as chromophore. Blue-light illumination induced ROS production followed by protein agglomeration in vitro. In vivo ROS may control LreA activity. LreA acts as a blue-light photoreceptor but also triggers temperature-shift-induced gene expression. Both responses required the conserved amino acid cysteine 421. We therefore propose that temperature mimics the photoresponse, which could be the ancient function of the chromoprotein. Temperature-dependent gene expression control with LreA was distinct from the response with phytochrome suggesting fine-tuned, photoreceptor-specific gene regulation.


Assuntos
Alternaria , Luz Azul , Flavina-Adenina Dinucleotídeo , Proteínas Fúngicas , Fotorreceptores Microbianos , Alternaria/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavina-Adenina Dinucleotídeo/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica , Fotorreceptores Microbianos/metabolismo , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fitocromo/metabolismo , Fitocromo/química , Fitocromo/genética , Domínios Proteicos , Espécies Reativas de Oxigênio/metabolismo , Temperatura
2.
Nat Microbiol ; 9(7): 1752-1763, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38877225

RESUMO

Initiation of development requires differential gene expression and metabolic adaptations. Here we show in the nematode-trapping fungus, Arthrobotrys flagrans, that both are achieved through a dual-function G-protein-coupled receptor (GPCR). A. flagrans develops adhesive traps and recognizes its prey, Caenorhabditis elegans, through nematode-specific pheromones (ascarosides). Gene-expression analyses revealed that ascarosides activate the fungal GPCR, GprC, at the plasma membrane and together with the G-protein alpha subunit GasA, reprograms the cell. However, GprC and GasA also reside in mitochondria and boost respiration. This dual localization of GprC in A. flagrans resembles the localization of the cannabinoid receptor CB1 in humans. The C. elegans ascaroside-sensing GPCR, SRBC66 and GPCRs of many fungi are also predicted for dual localization, suggesting broad evolutionary conservation. An SRBC64/66-GprC chimaeric protein was functional in A. flagrans, and C. elegans SRBC64/66 and DAF38 share ascaroside-binding sites with the fungal GprC receptor, suggesting 400-million-year convergent evolution.


Assuntos
Ascomicetos , Caenorhabditis elegans , Proteínas Fúngicas , Mitocôndrias , Receptores Acoplados a Proteínas G , Animais , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Mitocôndrias/metabolismo , Ascomicetos/metabolismo , Ascomicetos/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Feromônios/metabolismo , Humanos , Regulação Fúngica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA