Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 179(4): 1373-1385, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30593452

RESUMO

The basidiomycete Ustilago maydis causes smut disease in maize (Zea mays) by infecting all plant aerial tissues. The infection causes leaf chlorosis and stimulates the plant to produce nutrient-rich niches (i.e. tumors), where the fungus can proliferate and complete its life cycle. Previous studies have recorded high accumulation of soluble sugars and starch within these tumors. Using interdisciplinary approaches, we found that the sugar accumulation within tumors coincided with the differential expression of plant sugars will eventually be exported transporters and the proton/sucrose symporter Sucrose Transporter1 To accumulate plant sugars, the fungus deploys its own set of sugar transporters, generating a sugar gradient within the fungal cytosol, recorded by expressing a cytosolic glucose (Glc) Förster resonance energy transfer sensor. Our measurements indicated likely elevated Glc levels in hyphal tips during infection. Growing infected plants under dark conditions led to decreased plant sugar levels and loss of the fungal tip Glc gradient, supporting a tight link between fungal sugar acquisition and host supplies. Finally, the fungal infection causes a strong imbalance in plant sugar distribution, ultimately impacting seed set and yield.


Assuntos
Metabolismo dos Carboidratos , Interações Hospedeiro-Patógeno , Proteínas de Transporte de Monossacarídeos/metabolismo , Ustilago/metabolismo , Zea mays/microbiologia , Transferência Ressonante de Energia de Fluorescência , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
2.
Fungal Genet Biol ; 114: 42-52, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29580862

RESUMO

In most organisms, galactose is metabolized via the Leloir pathway, which is conserved from bacteria to mammals. Utilization of galactose requires a close interplay of the metabolic enzymes, as misregulation or malfunction of individual components can lead to the accumulation of toxic intermediate compounds. For the phytopathogenic basidiomycete Ustilago maydis, galactose is toxic for wildtype strains, i.e. leads to growth repression despite the presence of favorable carbon sources as sucrose. The galactose sensitivity can be relieved by two independent modifications: (1) by disruption of Hxt1, which we identify as the major transporter for galactose, and (2) by a point mutation in the gene encoding the galactokinase Gal1, the first enzyme of the Leloir pathway. The mutation in gal1(Y67F) leads to reduced enzymatic activity of Gal1 and thus may limit the formation of putatively toxic galactose-1-phosphate. However, systematic deletions and double deletions of different genes involved in galactose metabolism point to a minor role of galactose-1-phosphate in galactose toxicity. Our results show that molecular triggers for galactose toxicity in U. maydis differ from yeast and mammals.


Assuntos
Galactose/metabolismo , Ustilago/enzimologia , Ustilago/genética , Sequência de Aminoácidos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactoquinase/genética , Galactoquinase/metabolismo , Galactosefosfatos/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Redes e Vias Metabólicas , Mutagênese , Deleção de Sequência
3.
New Phytol ; 206(3): 1086-1100, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25678342

RESUMO

The smut Ustilago maydis, a ubiquitous pest of corn, is highly adapted to its host to parasitize on its organic carbon sources. We have identified a hexose transporter, Hxt1, as important for fungal development during both the saprophytic and the pathogenic stage of the fungus. Hxt1 was characterized as a high-affinity transporter for glucose, fructose, and mannose; ∆hxt1 strains show significantly reduced growth on these substrates, setting Hxt1 as the main hexose transporter during saprophytic growth. After plant infection, ∆hxt1 strains show decreased symptom development. However, expression of a Hxt1 protein with a mutation leading to constitutively active signaling in the yeast glucose sensors Snf3p and Rgt2p results in completely apathogenic strains. Fungal development is stalled immediately after plant penetration, implying a dual function of Hxt1 as transporter and sensor. As glucose sensors are only known for yeasts, 'transceptor' as Hxt1 may constitute a general mechanism for sensing of glucose in fungi. In U. maydis, Hxt1 links a nutrient-dependent environmental signal to the developmental program during pathogenic development.


Assuntos
Proteínas Fúngicas/fisiologia , Proteínas de Transporte de Monossacarídeos/fisiologia , Ustilago/patogenicidade , Fatores de Virulência/fisiologia , Zea mays/microbiologia , Substituição de Aminoácidos , Frutose/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Transdução de Sinais , Ustilago/genética , Ustilago/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
4.
Plant Cell ; 22(8): 2908-22, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20729384

RESUMO

Regulation of the cell cycle and morphogenetic switching during pathogenic and sexual development in Ustilago maydis is orchestrated by a concerted action of the a and b mating-type loci. Activation of either mating-type locus triggers the G2 cell cycle arrest that is a prerequisite for the formation of the infectious dikaryon; this cell cycle arrest is released only after penetration of the host plant. Here, we show that bW, one of the two homeodomain transcription factors encoded by the b mating-type locus, and the zinc-finger transcription factor Rbf1, a master regulator for pathogenic development, interact with Clp1 (clampless 1), a protein required for the distribution of nuclei during cell division of the dikaryon. In addition, we identify Cib1, a previously undiscovered bZIP transcription factor required for pathogenic development, as a Clp1-interacting protein. Clp1 interaction with bW blocks b-dependent functions, such as the b-dependent G2 cell cycle arrest and dimorphic switching. The interaction of Clp1 with Rbf1 results in the repression of the a-dependent pheromone pathway, conjugation tube formation, and the a-induced G2 cell cycle arrest. The concerted interaction of Clp1 with Rbf1 and bW coordinates a- and b-dependent cell cycle control and ensures cell cycle release and progression at the onset of biotrophic development.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Proteínas Fúngicas/metabolismo , Feromônios/fisiologia , Ustilago/citologia , Proteínas de Ciclo Celular/genética , DNA Fúngico/genética , Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento , Proteínas de Homeodomínio , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ustilago/genética , Ustilago/patogenicidade
5.
PLoS Pathog ; 6(8): e1001035, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20700446

RESUMO

In the phytopathogenic basidiomycete Ustilago maydis, sexual and pathogenic development are tightly connected and controlled by the heterodimeric bE/bW transcription factor complex encoded by the b-mating type locus. The formation of the active bE/bW heterodimer leads to the formation of filaments, induces a G2 cell cycle arrest, and triggers pathogenicity. Here, we identify a set of 345 bE/bW responsive genes which show altered expression during these developmental changes; several of these genes are associated with cell cycle coordination, morphogenesis and pathogenicity. 90% of the genes that show altered expression upon bE/bW-activation require the zinc finger transcription factor Rbf1, one of the few factors directly regulated by the bE/bW heterodimer. Rbf1 is a novel master regulator in a multilayered network of transcription factors that facilitates the complex regulatory traits of sexual and pathogenic development.


Assuntos
Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Ustilago/crescimento & desenvolvimento , Ustilago/genética , Ustilago/patogenicidade , Sequência de Bases , Ciclo Celular/genética , Separação Celular , Imunoprecipitação da Cromatina , Citometria de Fluxo , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Fatores de Transcrição
7.
Microorganisms ; 9(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34442657

RESUMO

The cyanoHAB forming cyanobacteria Microcystis and Planktothrix frequently produce high intracellular amounts of microcystins (MCs) or anabaenopeptins (APs). In this study, chemically modified MCs and APs have been localized on a subcellular level in Microcystis and Planktothrix applying copper-catalyzed alkyne-azide cycloaddition (CuACC). For this purpose, three different non-natural amino acids carrying alkyne or azide moieties were fed to individual P. agardhii strains No371/1 and CYA126/8 as well as to M. aeruginosa strain Hofbauer showing promiscuous incorporation of various amino acid substrates during non-ribosomal peptide synthesis (NRPS). Moreover, CYA126/8 peptide knock-out mutants and non-toxic strain Synechocystis PCC6803 were processed under identical conditions. Simultaneous labeling of modified peptides with ALEXA405 and ALEXA488 and lipid staining with BODIPY 505/515 were performed to investigate the intracellular location of the modified peptides. Pearson correlation coefficients (PCC) obtained from confocal images were calculated between the different fluorophores and the natural autofluorescence (AF), and between labeled modified peptides and dyed lipids to investigate the spatial overlap between peptides and the photosynthetic complex, and between peptides and lipids. Overall, labeling of modified MCs (M. aeruginosa) and APs (P. agardhii) using both fluorophores revealed increased intensity in MC/AP producing strains. For Synechocystis lacking NRPS, no labeling using either ALEXA405 or ALEXA488 was observed. Lipid staining in M. aeruginosa and Synechocystis was intense while in Planktothrix it was more variable. When compared with AF, both modified peptides and lipids showed a heterologous distribution. In comparison, the correlation between stained lipids and labeled peptides was not increased suggesting a reduced spatial overlap.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA