Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(11): 2602-2620.e10, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967532

RESUMO

Human cytomegalovirus (HCMV) can cause severe diseases in fetuses, newborns, and immunocompromised individuals. Currently, no vaccines are approved, and treatment options are limited. Here, we analyzed the human B cell response of four HCMV top neutralizers from a cohort of 9,000 individuals. By single-cell analyses of memory B cells targeting the pentameric and trimeric HCMV surface complexes, we identified vulnerable sites on the shared gH/gL subunits as well as complex-specific subunits UL128/130/131A and gO. Using high-resolution cryogenic electron microscopy, we revealed the structural basis of the neutralization mechanisms of antibodies targeting various binding sites. Moreover, we identified highly potent antibodies that neutralized a broad spectrum of HCMV strains, including primary clinical isolates, that outperform known antibodies used in clinical trials. Our study provides a deep understanding of the mechanisms of HCMV neutralization and identifies promising antibody candidates to prevent and treat HCMV infection.


Assuntos
Citomegalovirus , Proteínas do Envelope Viral , Recém-Nascido , Humanos , Glicoproteínas de Membrana , Anticorpos Neutralizantes , Células B de Memória , Anticorpos Antivirais , Análise de Célula Única
2.
Mol Carcinog ; 63(2): 209-223, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37818798

RESUMO

Cyclin dependent kinase 4 and 6 inhibitors such as abemaciclib are routinely used to treat metastatic estrogen receptor positive (ER+) breast cancer. However, adaptive mechanisms inhibit their effectiveness and allow for disease progression. Using ER+ breast cancer cell models, we show that acquired resistance to abemaciclib is accompanied by increase in metastatic potential. Mass spectrometry-based proteomics from abemaciclib sensitive and resistant cells showed that lysosomal proteins including CTSD (cathepsin D), cathepsin A and CD68 were significantly increased in resistant cells. Combination of abemaciclib and a lysosomal destabilizer, such as hydroxychloroquine (HCQ) or bafilomycin A1, resensitized resistant cells to abemaciclib. Also, combination of abemaciclib and HCQ decreased migration and invasive potential and increased lysosomal membrane permeability in resistant cells. Prosurvival B cell lymphoma 2 (BCL2) protein levels were elevated in resistant cells, and a triple treatment with abemaciclib, HCQ, and BCL2 inhibitor, venetoclax, significantly inhibited cell growth compared to treatment with abemaciclib and HCQ. Furthermore, resistant cells showed increased levels of Transcription Factor EB (TFEB), a master regulator of lysosomal-autophagy genes, and siRNA mediated knockdown of TFEB decreased invasion in resistant cells. TFEB was found to be mutated in a subset of invasive human breast cancer samples, and overall survival analysis in ER+, lymph node-positive breast cancer showed that increased TFEB expression correlated with decreased survival. Collectively, we show that acquired resistance to abemaciclib leads to increased metastatic potential and increased levels of protumorigenic lysosomal proteins. Therefore, the lysosomal pathway could be a therapeutic target in advanced ER+ breast cancer.


Assuntos
Aminopiridinas , Benzimidazóis , Neoplasias da Mama , Proteínas , Humanos , Feminino , Neoplasias da Mama/metabolismo , Lisossomos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
3.
Acta Neuropathol ; 147(1): 100, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884646

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease with average lifespan of 2-5 years after diagnosis. The identification of novel prognostic and pharmacodynamic biomarkers are needed to facilitate therapeutic development. Metalloprotein human superoxide dismutase 1 (SOD1) is known to accumulate and form aggregates in patient neural tissue with familial ALS linked to mutations in their SOD1 gene. Aggregates of SOD1 have also been detected in other forms of ALS, including the sporadic form and the most common familial form linked to abnormal hexanucleotide repeat expansions in the Chromosome 9 open reading frame 72 (C9ORF72) gene. Here, we report the development of a real-time quaking-induced conversion (RT-QuIC) seed amplification assay using a recombinant human SOD1 substrate to measure SOD1 seeding activity in postmortem spinal cord and motor cortex tissue from persons with different ALS etiologies. Our SOD1 RT-QuIC assay detected SOD1 seeds in motor cortex and spinal cord dilutions down to 10-5. Importantly, we detected SOD1 seeding activity in specimens from both sporadic and familial ALS cases, with the latter having mutations in either their SOD1 or C9ORF72 genes. Analyses of RT-QuIC parameters indicated similar lag phases in spinal cords of sporadic and familial ALS patients, but higher ThT fluorescence maxima by SOD1 familial ALS specimens and sporadic ALS thoracic cord specimens. For a subset of sporadic ALS patients, motor cortex and spinal cords were examined, with seeding activity in both anatomical regions. Our results suggest SOD1 seeds are in ALS patient neural tissues not linked to SOD1 mutation, suggesting that SOD1 seeding activity may be a promising biomarker, particularly in sporadic ALS cases for whom genetic testing is uninformative.


Assuntos
Esclerose Lateral Amiotrófica , Biomarcadores , Medula Espinal , Superóxido Dismutase-1 , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Córtex Motor/patologia , Córtex Motor/metabolismo , Mutação/genética , Medula Espinal/patologia , Medula Espinal/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Biomarcadores/análise
4.
Oecologia ; 205(3-4): 571-586, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39012384

RESUMO

Identifying how the demands of migration are met at the level of gene expression is critical for understanding migratory physiology and can potentially reveal how migratory forms evolve from nonmigratory forms and vice versa. Among fishes, migration between freshwater and seawater (diadromy) requires considerable osmoregulatory adjustments, powered by the ion pump Na+, K+-ATPase (NKA) in the gills. Paralogs of the catalytic α-subunit of the pump (NKA α1a and α1b) are reciprocally upregulated in fresh- and seawater, a response known as paralog-switching, in gills of some diadromous species. We tested ontogenetic changes in NKA α-subunit paralog expression patterns, comparing pre-migrant and migrant alewife (Alosa pseudoharengus) sampled in their natal freshwater environment and after 24 h in seawater. In comparison to pre-migrants, juvenile out-migrants exhibited stronger paralog switching via greater downregulation of NKA α1a in seawater. We also tested microevolutionary changes in the response, exposing juvenile diadromous and landlocked alewife to freshwater (0 ppt) and seawater (30 ppt) for 2, 5, and 15 days. Diadromous and landlocked alewife exhibited salinity-dependent paralog switching, but levels of NKA α1b transcription were higher and the decrease in NKA α1a was greater after seawater exposure in diadromous alewife. Finally, we placed alewife α-subunit NKA paralogs in a macroevolutionary context. Molecular phylogenies show alewife paralogs originated independently of paralogs in salmonids and other teleosts. This study demonstrated that NKA paralog switching is tied to halohabitat profile and that duplications of the NKA gene provided the substrate for multiple, independent molecular solutions that support a diadromous life history.


Assuntos
Água do Mar , Animais , Migração Animal , Água Doce , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Peixes , Evolução Biológica , Brânquias
5.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901847

RESUMO

In sequential sera from pregnant women with HCMV primary infection (PI), the serum neutralizing activity is higher against virions produced in epithelial and endothelial cells than in fibroblasts. Immunoblotting shows that the pentamer complex/trimer complex (PC/TC) ratio varies according to the producer cell culture type used for the virus preparation to be employed in the neutralizing antibody (NAb) assay, and is lower in fibroblasts and higher in epithelial, and especially endothelial cells. The blocking activity of TC- and PC-specific inhibitors varies according to the PC/TC ratio of virus preparations. The rapid reversion of the virus phenotype following its back passage to the original cell culture (fibroblasts) potentially argues in favor of a producer cell effect on virus phenotype. However, the role of genetic factors cannot be overlooked. In addition to the producer cell type, the PC/TC ratio may differ in single HCMV strains. In conclusion, the NAb activity not only varies with different HCMV strains, but is a dynamic parameter changing according to virus strain, type of target and producer cells, and number of cell culture passages. These findings may have some important implications for the development of both therapeutic antibodies and subunit vaccines.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Feminino , Gravidez , Células Endoteliais/metabolismo , Proteínas do Envelope Viral/genética , Glicoproteínas de Membrana/metabolismo , Anticorpos Neutralizantes , Fibroblastos/metabolismo
6.
J Environ Manage ; 344: 118420, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336016

RESUMO

River herring (Alosa sp.) are ecologically and economically foundational species in freshwater streams, estuaries, and oceanic ecosystems. The migration between fresh and saltwater is a key life stage of river herring, where the timing and magnitude of out-migration by juveniles can be limited when streams dry and hydrologic connectivity is lost. Operational decisions by water managers (e.g., restricting community water use) can impact out-migration success; however, these decisions are largely made without reliable predictions of outmigration potential across the migration season. This research presents a model to generate short-term forecasts of the probability of herring out-migration loss. We monitored streamflow and herring out-migration for 2 years at three critical runs along Long Island Sound (CT, USA) to develop empirical understandings of the hydrologic controls on out-migration. We used calibrated Soil and Water Assessment Tool hydrologic models of each site to generate 10,000 years of daily synthetic meteorological and streamflow records. These synthetic meteorological and streamflow data were used to train random forest models to provide rapid within-season forecasts of out-migration loss from two simple predictors: current spawning reservoir depth and the previous 30-day precipitation total. The resulting models were approximately 60%-80% accurate with a 1.5-month lead time and 70-90% accurate within 2 weeks. We anticipate that this tool will support regional decisions on spawning reservoir operations and community water withdrawals. The architecture of this tool provides a framework to facilitate broader predictions of the ecological consequences of streamflow connectivity loss in human-impacted watersheds.


Assuntos
Ecossistema , Emigração e Imigração , Animais , Humanos , Peixes , Rios , Aprendizado de Máquina , Água
7.
J Virol ; 95(17): e0061221, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34132577

RESUMO

Cell-free and cell-to-cell spread of herpesviruses involves a core fusion apparatus comprised of the fusion protein glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL/gO and gH/gL/pUL128-131 facilitate spread in different cell types. The gO and pUL128-131 components bind distinct receptors, but how the gH/gL portions of the complexes functionally compare is not understood. We previously characterized a panel of gL mutants by transient expression and showed that many were impaired for gH/gL-gB-dependent cell-cell fusion but were still able to form gH/gL/pUL128-131 and induce receptor interference. Here, the gL mutants were engineered into the HCMV BAC clones TB40/e-BAC4 (TB), TR, and Merlin (ME), which differ in their utilization of the two complexes for entry and spread. Several of the gL mutations disproportionately impacted gH/gL/gO-dependent entry and spread over gH/gL/pUL128-131 processes. The effects of some mutants could be explained by impaired gH/gL/gO assembly, but other mutants impacted gH/gL/gO function. Soluble gH/gL/gO containing the L201 mutant failed to block HCMV infection despite unimpaired binding to PDGFRα, indicating the existence of other important gH/gL/gO receptors. Another mutant (L139) enhanced the gH/gL/gO-dependent cell-free spread of TR, suggesting a "hyperactive" gH/gL/gO. Recently published crystallography and cryo-electron microscopy studies suggest structural conservation of the gH/gL underlying gH/gL/gO and gH/gL/pUL128-131. However, our data suggest important differences in the gH/gL of the two complexes and support a model in which gH/gL/gO can provide an activation signal for gB. IMPORTANCE The endemic betaherpesvirus HCMV circulates in human populations as a complex mixture of genetically distinct variants, establishes lifelong persistent infections, and causes significant disease in neonates and immunocompromised adults. This study capitalizes on our recent characterizations of three genetically distinct HCMV BAC clones to discern the functions of the envelope glycoprotein complexes gH/gL/gO and gH/gL/pUL128-13, which are promising vaccine targets that share the herpesvirus core fusion apparatus component, gH/gL. Mutations in the shared gL subunit disproportionally affected gH/gL/gO, demonstrating mechanistic differences between the two complexes, and may provide a basis for more refined evaluations of neutralizing antibodies.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Glicoproteínas de Membrana/metabolismo , Mutação , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Humanos , Glicoproteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Internalização do Vírus
8.
J Virol ; 95(15): e0220720, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011552

RESUMO

Heterodimers of glycoproteins H (gH) and L (gL) comprise a basal element of the viral membrane fusion machinery conserved across herpesviruses. In human cytomegalovirus (HCMV), the glycoprotein UL116 assembles onto gH at a position similar to that occupied by gL, forming a heterodimer that is incorporated into virions. Here, we show that UL116 promotes the expression of gH/gL complexes and is required for the efficient production of infectious cell-free virions. UL116-null mutants show a 10-fold defect in production of infectious cell-free virions from infected fibroblasts and epithelial cells. This defect is accompanied by reduced expression of two disulfide-linked gH/gL complexes that play crucial roles in viral entry: the heterotrimer of gH/gL with glycoprotein O (gO) and the pentameric complex of gH/gL with UL128, UL130, and UL131. Kifunensine, a mannosidase inhibitor that interferes with endoplasmic reticulum (ER)-associated degradation (ERAD) of terminally misfolded glycoproteins, restored levels of gH, gL, and gO in UL116-null-infected cells, indicating that constituents of HCMV gH complexes are unstable in the absence of UL116. Further, we find that gH/UL116 complexes are abundant in virions, since a major gH species not covalently linked to other glycoproteins, which has long been observed in the literature, is detected from wild-type but not UL116-null virions. Interestingly, UL116 coimmunoprecipitates with UL148, a viral ER-resident glycoprotein that attenuates ERAD of gO, and we observe elevated levels of UL116 in UL148-null virions. Collectively, our findings argue that UL116 is a chaperone for gH that supports the assembly, maturation, and incorporation of gH/gL complexes into virions. IMPORTANCE HCMV is a betaherpesvirus that causes dangerous opportunistic infections in immunocompromised patients as well as in the immune-naive fetus and preterm infants. The potential of the virus to enter new host cells is governed in large part by two alternative viral glycoprotein H (gH)/glycoprotein L (gL) complexes that play important roles in entry: gH/gL/gO and gH/gL/UL128-131. A recently identified virion gH complex, comprised of gH bound to UL116, adds a new layer of complexity to the mechanisms that contribute to HCMV infectivity. Here, we show that UL116 promotes the expression of gH/gL complexes and that UL116 interacts with the viral ER-resident glycoprotein UL148, a factor that supports the expression of gH/gL/gO. Overall, our results suggest that UL116 is a chaperone for gH. These findings have important implications for understanding HCMV cell tropism as well as for the development of vaccines against the virus.


Assuntos
Citomegalovirus/crescimento & desenvolvimento , Glicoproteínas de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Alcaloides/farmacologia , Linhagem Celular , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/patologia , Estresse do Retículo Endoplasmático/fisiologia , Inibidores Enzimáticos/farmacologia , Regulação Viral da Expressão Gênica/genética , Células HEK293 , Humanos , Proteínas Virais de Fusão/genética , Internalização do Vírus
9.
Cytometry A ; 101(3): 228-236, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34787950

RESUMO

User consultation is an essential first step in assuring high-quality flow cytometric data. A central challenge to shared resource laboratory (SRL) staff is how to best guide new and current users to meet each projects' needs. One solution to this challenge is to follow a standard user consultation platform addressing all critical steps between the conception of the experiment and the actual acquisition of samples. Here we describe considerations to help an SRL understand the researcher's goals and how best the SRL staff can provide expert advice in a structured manner. User consultation has an educational nature, informing users about current best practices in cytometry that apply to their specific utilization. A consultation report also improves communication between the SRL, principal investigator, and lab members of the collaborating researcher. Development of best SRL practices is spearheaded by the ISAC SRL committee and this communication sets the foundation to initiate such report for user consultation. Implementation of best practices during user consultation will improve rigor and reproducibility in cytometry.


Assuntos
Laboratórios , Pesquisadores , Citometria de Fluxo , Humanos , Encaminhamento e Consulta , Reprodutibilidade dos Testes
10.
J Mol Cell Cardiol ; 156: 7-19, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33766524

RESUMO

BACKGROUND: Heart failure (HF) is associated with highly significant morbidity, mortality, and health care costs. Despite the significant advances in therapies and prevention, HF remains associated with poor clinical outcomes. Understanding the contractile force and kinetic changes at the level of cardiac muscle during end-stage HF in consideration of underlying etiology would be beneficial in developing targeted therapies that can help improve cardiac performance. OBJECTIVE: Investigate the impact of the primary etiology of HF (ischemic or non-ischemic) on left ventricular (LV) human myocardium force and kinetics of contraction and relaxation under near-physiological conditions. METHODS AND RESULTS: Contractile and kinetic parameters were assessed in LV intact trabeculae isolated from control non-failing (NF; n = 58) and end-stage failing ischemic (FI; n = 16) and non-ischemic (FNI; n = 38) human myocardium under baseline conditions, length-dependent activation, frequency-dependent activation, and response to the ß-adrenergic stimulation. At baseline, there were no significant differences in contractile force between the three groups; however, kinetics were impaired in failing myocardium with significant slowing down of relaxation kinetics in FNI compared to NF myocardium. Length-dependent activation was preserved and virtually identical in all groups. Frequency-dependent activation was clearly seen in NF myocardium (positive force frequency relationship [FFR]), while significantly impaired in both FI and FNI myocardium (negative FFR). Likewise, ß-adrenergic regulation of contraction was significantly impaired in both HF groups. CONCLUSIONS: End-stage failing myocardium exhibited impaired kinetics under baseline conditions as well as with the three contractile regulatory mechanisms. The pattern of these kinetic impairments in relation to NF myocardium was mainly impacted by etiology with a marked slowing down of kinetics in FNI myocardium. These findings suggest that not only force development, but also kinetics should be considered as a therapeutic target for improving cardiac performance and thus treatment of HF.


Assuntos
Suscetibilidade a Doenças , Insuficiência Cardíaca Diastólica/etiologia , Insuficiência Cardíaca Diastólica/fisiopatologia , Miocárdio/metabolismo , Disfunção Ventricular Esquerda/complicações , Disfunção Ventricular Esquerda/metabolismo , Biomarcadores , Análise de Dados , Feminino , Insuficiência Cardíaca , Insuficiência Cardíaca Diastólica/diagnóstico , Insuficiência Cardíaca Diastólica/tratamento farmacológico , Testes de Função Cardíaca , Frequência Cardíaca , Humanos , Isoproterenol/farmacologia , Isoproterenol/uso terapêutico , Cinética , Masculino , Contração Miocárdica , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/tratamento farmacológico
11.
RNA ; 25(11): 1407-1415, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31439810

RESUMO

The transferrin receptor (TfR1) is the principal means of iron importation for most mammalian cells, and regulation of mRNA stability is a major mechanism through which TfR1 expression is controlled in response to changing intracellular iron levels. An endonuclease activity degrades the TfR1 mRNA during iron-repletion, which reduces iron importation and contributes to the restoration of homeostasis. Correct identification of the TfR1 mRNA endonuclease activity is important as it has the potential to be a pharmacological target for the treatment of several pathologies in which iron homeostasis is perturbed. A recent RNA article identified both miR-7-5p and miR-141-3p as mediators of TfR1 mRNA degradation during iron-repletion. However, the proposed TfR1 microRNA binding sites are inconsistent with several earlier studies. To better understand the discrepancy, we tested the proposed sites within an assay developed to detect changes to TfR1 mRNA stability. The complete disruption of both proposed binding sites failed to impact the assay in all cell lines tested, which include cell lines derived from mouse connective tissue (L-M), a human colon adenocarcinoma (SW480), and a human ovarian carcinoma (A2780). The overexpression of a miR-7-5p mimic also failed to decrease expression of both the endogenous TfR1 mRNA and a luciferase-TfR1 reporter under conditions in which the expression of a previously identified mir-7-5p target is attenuated. As a result, it is unlikely that the microRNAs are directly mediating iron-responsive degradation of the TfR1 mRNA as recently proposed. Instead, three short hairpin loops within the TfR1 3'-UTR are shown to be more consistent as endonuclease recognition elements.


Assuntos
Antígenos CD/genética , MicroRNAs/fisiologia , RNA Mensageiro/metabolismo , Receptores da Transferrina/genética , Regiões 3' não Traduzidas , Animais , Antígenos CD/metabolismo , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Ferro/metabolismo , Camundongos , MicroRNAs/metabolismo , Estabilidade de RNA , Receptores da Transferrina/metabolismo
12.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996433

RESUMO

Human cytomegalovirus (HCMV) glycoproteins H and L (gH/gL) can be bound by either gO or the UL128 to UL131 proteins (referred to here as UL128-131) to form complexes that facilitate entry and spread, and the complexes formed are important targets of neutralizing antibodies. Strains of HCMV vary considerably in the levels of gH/gL/gO and gH/gL/UL128-131, and this can impact infectivity and cell tropism. In this study, we investigated how natural interstrain variation in the amino acid sequence of gO influences the biology of HCMV. Heterologous gO recombinants were constructed in which 6 of the 8 alleles or genotypes (GT) of gO were analyzed in the backgrounds of strains TR and Merlin (ME). The levels of gH/gL complexes were not affected, but there were impacts on entry, spread, and neutralization by anti-gH antibodies. AD169 (AD) gO (GT1a) [referred to here as ADgO(GT1a)] drastically reduced cell-free infectivity of both strains on fibroblasts and epithelial cells. PHgO(GT2a) increased cell-free infectivity of TR in both cell types, but spread in fibroblasts was impaired. In contrast, spread of ME in both cell types was enhanced by Towne (TN) gO (GT4), despite similar cell-free infectivity. TR expressing TNgO(GT4) was resistant to neutralization by anti-gH antibodies AP86 and 14-4b, whereas ADgO(GT1a) conferred resistance to 14-4b but enhanced neutralization by AP86. Conversely, ME expressing ADgO(GT1a) was more resistant to 14-4b. These results suggest that (i) there are mechanistically distinct roles for gH/gL/gO in cell-free and cell-to-cell spread, (ii) gO isoforms can differentially shield the virus from neutralizing antibodies, and (iii) effects of gO polymorphisms are epistatically dependent on other variable loci.IMPORTANCE Advances in HCMV population genetics have greatly outpaced understanding of the links between genetic diversity and phenotypic variation. Moreover, recombination between genotypes may shuffle variable loci into various combinations with unknown outcomes. UL74(gO) is an important determinant of HCMV infectivity and one of the most diverse loci in the viral genome. By analyzing interstrain heterologous UL74(gO) recombinants, we showed that gO diversity can have dramatic impacts on cell-free and cell-to-cell spread as well as on antibody neutralization and that the manifestation of these impacts can be subject to epistatic influences of the global genetic background. These results highlight the potential limitations of laboratory studies of HCMV biology that use single, isolated genotypes or strains.


Assuntos
Anticorpos Neutralizantes/imunologia , Citomegalovirus/genética , Epitopos/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Polimorfismo Genético , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Linhagem Celular , Citomegalovirus/imunologia , Células Epiteliais/virologia , Fibroblastos/virologia , Humanos , Proteínas Recombinantes , Proteínas Virais
13.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32321807

RESUMO

It is widely held that clinical isolates of human cytomegalovirus (HCMV) are highly cell associated, and mutations affecting the UL128-131 and RL13 loci that arise in culture lead to the appearance of a cell-free spread phenotype. The bacterial artificial chromosome (BAC) clone Merlin (ME) expresses abundant UL128-131, is RL13 impaired, and produces low infectivity virions in fibroblasts, whereas TB40/e (TB) and TR are low in UL128-131, are RL13 intact, and produce virions of much higher infectivity. Despite these differences, quantification of spread by flow cytometry revealed remarkably similar spread efficiencies in fibroblasts. In epithelial cells, ME spread more efficiently, consistent with robust UL128-131 expression. Strikingly, ME spread far better than did TB or TR in the presence of neutralizing antibodies on both cell types, indicating that ME is not simply deficient at cell-free spread but is particularly efficient at cell-to-cell spread, whereas TB and TR cell-to-cell spread is poor. Sonically disrupted ME-infected cells contained scant infectivity, suggesting that the efficient cell-to-cell spread mechanism of ME depends on features of the intact cells such as junctions or intracellular trafficking processes. Even when UL128-131 was transcriptionally repressed, cell-to-cell spread of ME was still more efficient than that of TB or TR. Moreover, RL13 expression comparably reduced both cell-free and cell-to-cell spread of all three strains, suggesting that it acts at a stage of assembly and/or egress common to both routes of spread. Thus, HCMV strains can be highly specialized for either for cell-free or cell-to-cell spread, and these phenotypes are determined by factors beyond the UL128-131 or RL13 loci.IMPORTANCE Both cell-free and cell-to-cell spread are likely important for the natural biology of HCMV. In culture, strains clearly differ in their capacity for cell-free spread as a result of differences in the quantity and infectivity of extracellular released progeny. However, it has been unclear whether "cell-associated" phenotypes are simply the result of poor cell-free spread or are indicative of particularly efficient cell-to-cell spread mechanisms. By measuring the kinetics of spread at early time points, we were able to show that HCMV strains can be highly specialized to either cell-free or cell-to-cell mechanisms, and this was not strictly linked the efficiency of cell-free spread. Our results provide a conceptual approach to evaluating intervention strategies for their ability to limit cell-free or cell-to-cell spread as independent processes.


Assuntos
Glicoproteínas de Membrana/genética , Proteínas do Envelope Viral/genética , Replicação Viral/genética , Linhagem Celular , Células Cultivadas , Cromossomos Artificiais Bacterianos , Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Células Epiteliais/virologia , Fibroblastos/virologia , Citometria de Fluxo/métodos , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Replicação Viral/fisiologia
14.
J Fish Biol ; 99(4): 1236-1246, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34101179

RESUMO

Growth rate and energy reserves are important determinants of fitness and are governed by endogenous and exogenous factors. Thus, examining the influence of individual and multiple stressors on growth and energy reserves can help estimate population health under current and future conditions. In young anadromous fishes, freshwater habitat quality determines physiological state and fitness of juveniles emigrating to marine habitats. In this study, the authors tested how temperature and food availability affect survival, growth and energy reserves in juvenile anadromous alewives (Alosa pseudoharengus), a forage fish distributed along the eastern North American continent. Field-collected juvenile anadromous A. pseudoharengus were exposed for 21 days to one of two temperatures (21°C and 25°C) and one of two levels of food rations (1% or 2% tank biomass daily) and compared for differences in final size, fat mass-at-length, lean mass-at-length and energy density. Increased temperature and reduced ration both led to lower growth rates, and the effect of reduced ration was greater at higher temperature. Fat mass-at-length decreased with dry mass, and energy density increased with total length, suggesting size-based endogenous influences on energy reserves. Lower ration also directly decreased fat mass-at-length, lean mass-at-length and energy density. Given the fitness implications of size and energy reserves, temperature and food availability should be considered important indicators of nursery habitat quality and incorporated in A. pseudoharengus life-history models to improve forecasting of population health under climate change.


Assuntos
Ecossistema , Peixes , Animais , Água Doce , Temperatura
15.
Oncologist ; 24(1): 76-85, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30266893

RESUMO

BACKGROUND: Discussions regarding palliative care and end-of-life care issues are frequently delayed past the time of usefulness, resulting in unwanted medical care. We sought to develop a patient-reported outcome (PRO) instrument that allows patients to voice their symptom burdens and facilitate timing of discussions. SUBJECTS, MATERIALS, AND METHODS: A seven-item PRO instrument (Cota Patient Assessed Symptom Score-7 item [CPASS-7]) covering physical performance status, pain, burden, and depression was administered (September 2015 through October 2016) with correlation to overall survival, correcting for time to complete survey since diagnosis. RESULTS: A total of 1,191 patients completed CPASS-7 at a median of 560 days following the diagnosis of advanced cancer. Of these patients, 49% were concerned that they could not do the things they wanted; 35% reported decreased performance status. Financial toxicity was reported by 39% of patients, with family burdens noted in 25%. Although depression was reported by 15%, 43% reported lack of pleasure. Pain was reported by 33%. The median CPASS-7 total symptom burden score was 16 (possible 0-112). With a median follow-up of 15 months from initial survey, 46% had died. Patients with symptom burden scores <29 and ≥29 had a 6-month overall survival rate of 87% and 67%, respectively, and 12-month survival rates of 72% and 50%. A one-point score increase resulted in a 1.8% increase in expected hazard. CONCLUSION: Patients with advanced cancer with higher levels of symptom burden, as self-reported on the CPASS-7, had inferior survival. The PRO facilitates identification of patients appropriate for reassessment of treatment goals and potentially palliative and end-of-life care in response to symptom burden concerns. IMPLICATIONS FOR PRACTICE: A seven-item patient-reported outcome (PRO) instrument was administered to 1,191 patients with advanced cancers. Patients self-reporting higher levels of physical and psychological symptom burden had inferior overall survival rates. High individual item symptom PRO responses should serve as a useful trigger to initiate supportive interventions, but when scores indicate global problems, discussions regarding end-of-life care might be appropriate.


Assuntos
Custos de Cuidados de Saúde/tendências , Neoplasias/economia , Neoplasias/mortalidade , Cuidados Paliativos/métodos , Medidas de Resultados Relatados pelo Paciente , Qualidade de Vida/psicologia , Idoso , Feminino , Humanos , Masculino , Assistência Terminal
17.
PLoS Genet ; 11(4): e1005151, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25868109

RESUMO

Mutator phenotypes accelerate the evolutionary process of neoplastic transformation. Historically, the measurement of mutation rates has relied on scoring the occurrence of rare mutations in target genes in large populations of cells. Averaging mutation rates over large cell populations assumes that new mutations arise at a constant rate during each cell division. If the mutation rate is not constant, an expanding mutator population may contain subclones with widely divergent rates of evolution. Here, we report mutation rate measurements of individual cell divisions of mutator yeast deficient in DNA polymerase ε proofreading and base-base mismatch repair. Our data are best fit by a model in which cells can assume one of two distinct mutator states, with mutation rates that differ by an order of magnitude. In error-prone cell divisions, mutations occurred on the same chromosome more frequently than expected by chance, often in DNA with similar predicted replication timing, consistent with a spatiotemporal dimension to the hypermutator state. Mapping of mutations onto predicted replicons revealed that mutations were enriched in the first half of the replicon as well as near termination zones. Taken together, our findings show that individual genome replication events exhibit an unexpected volatility that may deepen our understanding of the evolution of mutator-driven malignancies.


Assuntos
Taxa de Mutação , Leveduras/genética , Alelos , Pareamento Incorreto de Bases , Divisão Celular , Reparo de Erro de Pareamento de DNA , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Replicação do DNA , DNA Fúngico/genética , Genoma Fúngico , Fenótipo , Replicon , Análise de Sequência de DNA , Leveduras/metabolismo
18.
Proc Natl Acad Sci U S A ; 112(19): E2457-66, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25827226

RESUMO

Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Mutação , Nucleotídeos/química , Fosfatos/química , Saccharomyces cerevisiae/metabolismo , Alelos , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Ciclo Celular , Análise Mutacional de DNA , Replicação do DNA , Variação Genética , Humanos , Mutagênese , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fenótipo , Plasmídeos/metabolismo , Fase S , Saccharomyces cerevisiae/genética
19.
BMC Plant Biol ; 17(1): 31, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28143395

RESUMO

BACKGROUND: Skewing root patterns provide key insights into root growth strategies and mechanisms that produce root architectures. Roots exhibit skewing and waving when grown on a tilted, impenetrable surface. The genetics guiding these morphologies have been examined, revealing that some Arabidopsis ecotypes skew and wave (e.g. WS), while others skew insignificantly but still wave (e.g. Col-0). The underlying molecular mechanisms of skewing and waving remain unclear. In this study, transcriptome data were derived from two Arabidopsis ecotypes, WS and Col-0, under three tilted growth conditions in order to identify candidate genes involved in skewing. RESULTS: This work identifies a number of genes that are likely involved in skewing, using growth conditions that differentially affect skewing and waving. Comparing the gene expression profiles of WS and Col-0 in different tilted growth conditions identified 11 candidate genes as potentially involved in the control of skewing. These 11 genes are involved in several different cellular processes, including sugar transport, salt signaling, cell wall organization, and hormone signaling. CONCLUSIONS: This study identified 11 genes whose change in expression level is associated with root skewing behavior. These genes are involved in signaling and perception, rather than the physical restructuring of root. Future work is needed to elucidate the potential role of these candidate genes during root skewing.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ecótipo , Perfilação da Expressão Gênica , Raízes de Plantas/genética , Transdução de Sinais
20.
Mol Ecol ; 26(3): 831-848, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28012221

RESUMO

Comparative approaches in physiological genomics offer an opportunity to understand the functional importance of genes involved in niche exploitation. We used populations of Alewife (Alosa pseudoharengus) to explore the transcriptional mechanisms that underlie adaptation to fresh water. Ancestrally anadromous Alewives have recently formed multiple, independently derived, landlocked populations, which exhibit reduced tolerance of saltwater and enhanced tolerance of fresh water. Using RNA-seq, we compared transcriptional responses of an anadromous Alewife population to two landlocked populations after acclimation to fresh (0 ppt) and saltwater (35 ppt). Our results suggest that the gill transcriptome has evolved in primarily discordant ways between independent landlocked populations and their anadromous ancestor. By contrast, evolved shifts in the transcription of a small suite of well-characterized osmoregulatory genes exhibited a strong degree of parallelism. In particular, transcription of genes that regulate gill ion exchange has diverged in accordance with functional predictions: freshwater ion-uptake genes (most notably, the 'freshwater paralog' of Na+ /K+ -ATPase α-subunit) were more highly expressed in landlocked forms, whereas genes that regulate saltwater ion secretion (e.g. the 'saltwater paralog' of NKAα) exhibited a blunted response to saltwater. Parallel divergence of ion transport gene expression is associated with shifts in salinity tolerance limits among landlocked forms, suggesting that changes to the gill's transcriptional response to salinity facilitate freshwater adaptation.


Assuntos
Aclimatação/genética , Peixes/genética , Água Doce , Brânquias/fisiologia , Transcriptoma , Animais , Peixes/fisiologia , Água do Mar , ATPase Trocadora de Sódio-Potássio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA