Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-29038280

RESUMO

The host immune response to human cytomegalovirus (HCMV) is effective against HCMV reactivation from latency, though not sufficient to clear the virus. T cells are primarily responsible for the control of viral reactivation. When the host immune system is compromised, as in transplant recipients with immunosuppression, HCMV reactivation and progressive infection can cause serious morbidity and mortality. Adoptive T cell therapy is effective for the control of HCMV infection in transplant recipients. However, it is a highly personalized therapeutic regimen and is difficult to implement in routine clinical practice. In this study, we explored a bispecific-antibody strategy to direct non-HCMV-specific T cells to recognize and exert effector functions against HCMV-infected cells. Using a knobs-into-holes strategy, we constructed a bispecific antibody in which one arm is specific for CD3 and can trigger T cell activation, while the other arm, specific for HCMV glycoprotein B (gB), recognizes and marks HCMV-infected cells based on the expression of viral gB on their surfaces. We showed that this bispecific antibody was able to redirect T cells with specificity for HCMV-infected cells in vitro In the presence of HCMV infection, the engineered antibody was able to activate T cells with no HCMV specificity for cytokine production, proliferation, and the expression of phenotype markers unique to T cell activation. These results suggested the potential of engineered bispecific antibodies, such as the construct described here, as prophylactic or therapeutic agents against HCMV reactivation and infection.


Assuntos
Anticorpos Biespecíficos/farmacologia , Complexo CD3/imunologia , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Proteínas do Envelope Viral/imunologia , Transferência Adotiva , Anticorpos Monoclonais Humanizados , Anticorpos Antivirais , Especificidade de Anticorpos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral
2.
Clin Breast Cancer ; 22(4): e457-e462, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34920954

RESUMO

INTRODUCTION: Diagnosis of LM is limited by low sensitivity of cerebrospinal fluid (CSF) cytopathology. Detecting tumor cells in CSF (CSF-TCs) might be more sensitive. We evaluated if CNSide (CNSide), a novel assay for tumor cell detection in CSF, can detect CSF-TCs better than conventional CSF cytology. METHODS: We enrolled adults with metastatic breast cancer and clinical suspicion for LM to undergo lumbar puncture (LP) for CSF cytopathology and CNSide. CNSide captured CSF-TCs using a primary 10-antibody mixture, streptavidin-coated microfluidic channel, and biotinylated secondary antibodies. CSF-TCs were assessed for estrogen receptor (ER) expression by fluorescent antibody and HER2 amplification by fluorescent in situ hybridization (FISH). CSF cell-free DNA (cfDNA) was extracted for next-generation sequencing (NGS). Leptomeningeal disease was defined as positive CSF cytology and/or unequivocal MRI findings. We calculated sensitivity and specificity of CSF cytology and CNSide for the diagnosis of LM. RESULTS: Ten patients, median age 51 years (range, 37-64), underwent diagnostic LP with CSF evaluation by cytology and CNSide. CNSide had sensitivity of 100% (95% Confidence Interval [CI], 40%-100%) and specificity of 83% (95% CI, 36%-100%) for LM. Among these patients, concordance of ER and HER2 status between CSF-TCs and metastatic biopsy were 60% and 75%, respectively. NGS of CSF cfDNA identified somatic mutations in three patients, including one with PIK3CA p.H1047L in blood and CSF. CONCLUSIONS: CNSide may be a viable platform to detect CSF-TCs, with potential use as a diagnostic tool for LM in patients with metastatic breast cancer. Additional, larger studies are warranted.


Assuntos
Neoplasias da Mama , Ácidos Nucleicos Livres , Carcinomatose Meníngea , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Carcinomatose Meníngea/secundário
3.
Nat Cancer ; 2(11): 1170-1184, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35122056

RESUMO

Leukocyte immunoglobulin-like receptor B (LILRB), a family of immune checkpoint receptors, contributes to acute myeloid leukemia (AML) development, but the specific mechanisms triggered by activation or inhibition of these immune checkpoints in cancer is largely unknown. Here we demonstrate that the intracellular domain of LILRB3 is constitutively associated with the adaptor protein TRAF2. Activated LILRB3 in AML cells leads to recruitment of cFLIP and subsequent NF-κB upregulation, resulting in enhanced leukemic cell survival and inhibition of T-cell-mediated anti-tumor activity. Hyperactivation of NF-κB induces a negative regulatory feedback loop mediated by A20, which disrupts the interaction of LILRB3 and TRAF2; consequently the SHP-1/2-mediated inhibitory activity of LILRB3 becomes dominant. Finally, we show that blockade of LILRB3 signaling with antagonizing antibodies hampers AML progression. LILRB3 thus exerts context-dependent activating and inhibitory functions, and targeting LILRB3 may become a potential therapeutic strategy for AML treatment.


Assuntos
Leucemia Mieloide Aguda , NF-kappa B , Antígenos CD/metabolismo , Humanos , Imunidade , Receptores Imunológicos/metabolismo , Linfócitos T/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
Cell Metab ; 30(4): 706-719.e6, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31495688

RESUMO

The physiological role of leptin is thought to be a driving force to reduce food intake and increase energy expenditure. However, leptin therapies in the clinic have failed to effectively treat obesity, predominantly due to a phenomenon referred to as leptin resistance. The mechanisms linking obesity and the associated leptin resistance remain largely unclear. With various mouse models and a leptin neutralizing antibody, we demonstrated that hyperleptinemia is a driving force for metabolic disorders. A partial reduction of plasma leptin levels in the context of obesity restores hypothalamic leptin sensitivity and effectively reduces weight gain and enhances insulin sensitivity. These results highlight that a partial reduction in plasma leptin levels leads to improved leptin sensitivity, while pointing to a new avenue for therapeutic interventions in the treatment of obesity and its associated comorbidities.


Assuntos
Anticorpos Neutralizantes/farmacologia , Resistência à Insulina , Insulina/metabolismo , Leptina/antagonistas & inibidores , Obesidade/terapia , Redução de Peso/efeitos dos fármacos , Programas de Redução de Peso/métodos , Animais , Anticorpos Neutralizantes/uso terapêutico , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Leptina/sangue , Camundongos , Camundongos Endogâmicos , Obesidade/metabolismo
5.
Oncotarget ; 8(43): 73654-73669, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29088734

RESUMO

Human cytomegalovirus (HCMV) can cause life-threatening infection in immunosuppressed patients, and in utero infection that may lead to birth defects. No vaccine is currently available. HCMV infection in healthy subjects is generally asymptomatic, and virus persists as latent infection for life. Host immunity is effective against reactivation and super-infection with another strain. Thus, vaccine candidates able to elicit immune responses similar to those of natural infection may confer protection. Since neutralization is essential for prophylactic vaccines, it is important to understand how antiviral antibodies are developed in natural infection. We hypothesized that the developmental path of antibodies in seropositive subjects could be unveiled by interrogating host B-cell repertoires using unique genetic signature sequences of mAbs. Towards this goal, we isolated 56 mAbs from three healthy donors with different neutralizing titers. Antibodies specific to the gH/gL/pUL128/130/131 pentameric complex were more potent in neutralization than those to gB. Using these mAbs as probes, patterns of extended lineage development for B-cells and evidence of active antibody maturation were revealed in two donors with higher neutralizing titers. Importantly, such patterns were limited to mAbs specific to the pentamer, but none to gB. Thus, memory B-cells with antiviral function such as neutralization were active during latent infection in the two donors, and this activity was responsible for their higher neutralizing titers. Our results indicated that memory B-cells of neutralizing capacity could be frequently mobilized in host, probably responding to silent viral episodes, further suggesting that neutralizing antibodies could play a role in control of recurrent infection.

6.
PLoS One ; 9(7): e101929, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25013968

RESUMO

In mammals, Bone Morphogenetic Protein (BMP) pathway signaling is important for the growth and homeostasis of extracellular matrix, including basement membrane remodeling, scarring, and bone growth. A conserved BMP member in Caenorhabditis elegans, DBL-1, regulates body length in a dose-sensitive manner. Loss of DBL-1 pathway signaling also results in increased anesthetic sensitivity. However, the physiological basis of these pleiotropic phenotypes is largely unknown. We created a DBL-1 over-expressing strain and show that sensitivity to anesthetics is inversely related to the dose of DBL-1. Using pharmacological, genetic analyses, and a novel dye permeability assay for live, microwave-treated animals, we confirm that DBL-1 is required for the barrier function of the cuticle, a specialized extracellular matrix. We show that DBL-1 signaling is required to prevent animals from forming tail-entangled aggregates in liquid. Stripping lipids off the surface of wild-type animals recapitulates this phenotype. Finally, we find that DBL-1 signaling affects ultrastructure of the nematode cuticle in a dose-dependent manner, as surface lipid content and cuticular organization are disrupted in animals with genetically altered DBL-1 levels. We propose that the lipid layer coating the nematode cuticle normally prevents tail entanglement, and that reduction of this layer by loss of DBL-1 signaling promotes aggregation. This work provides a physiological mechanism that unites the DBL-1 signaling pathway roles of not only body size regulation and drug responsiveness, but also the novel Hoechst 33342 staining and aggregation phenotypes, through barrier function, content, and organization of the cuticle.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Matriz Extracelular/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
7.
J Vis Exp ; (59): e3362, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22314613

RESUMO

The cuticle of C. elegans is a highly resistant structure that surrounds the exterior of the animal(1-4). The cuticle not only protects the animal from the environment, but also determines body shape and plays a role in motility(4-6). Several layers secreted by epidermal cells comprise the cuticle, including an outermost lipid layer(7). Circumferential ridges in the cuticle called annuli pattern the length of the animal and are present during all stages of development(8). Alae are longitudinal ridges that are present during specific stages of development, including L1, dauer, and adult stages(2,9). Mutations in genes that affect cuticular collagen organization can alter cuticular structure and animal body morphology(5,6,10,11). While cuticular imaging using compound microscopy with DIC optics is possible, current methods that highlight cuticular structures include fluorescent transgene expression(12), antibody staining(13), and electron microscopy(1). Labeled wheat germ agglutinin (WGA) has also been used to visualize cuticular glycoproteins, but is limited in resolving finer cuticular structures(14). Staining of cuticular surface using fluorescent dye has been observed, but never characterized in detail(15). We present a method to visualize cuticle in live C. elegans using the red fluorescent lipophilic dye DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate), which is commonly used in C. elegans to visualize environmentally exposed neurons. This optimized protocol for DiI staining is a simple, robust method for high resolution fluorescent visualization of annuli, alae, vulva, male tail, and hermaphrodite tail spike in C. elegans.


Assuntos
Caenorhabditis elegans/anatomia & histologia , Carbocianinas/química , Corantes Fluorescentes/química , Coloração e Rotulagem/métodos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA