RESUMO
Campylobacter enteritis is the most common cause of foodborne bacterial diarrhea in humans. Although various studies have been performed to clarify the pathomechanism in Campylobacter infection, the mechanism itself and bacterial virulence factors are yet not completely understood. The purpose of this chapter is to (i) give an overview on Campylobacter-induced diarrheal mechanisms, (ii) illustrate underlying barrier defects, (iii) explain the role of the mucosal immune response and (iv) weigh preventive and therapeutic approaches. Our present knowledge of pathogenetic and diarrheal mechanisms of Campylobacter jejuni is explained in the first part of this chapter. In the second part, the molecular basis for the Campylobacter-induced barrier dysfunction is compared with that of other species in the Campylobacter genus. The bacteria are capable of overcoming the intestinal epithelial barrier. The invasion into the intestinal mucosa is the initial step of the infection, followed by a second step, the epithelial barrier impairment. The extent of the impairment depends on various factors, including tight junction dysregulation and epithelial apoptosis. The disturbed intestinal epithelium leads to a loss of water and solutes, the leak flux type of diarrhea, and facilitates the uptake of harmful antigens, the leaky gut phenomenon. The barrier dysfunction is accompanied by increased pro-inflammatory cytokine secretion, which is partially responsible for the dysfunction. Moreover, cytokines also mediate ion channel dysregulation (e.g., epithelial sodium channel, ENaC), leading to another diarrheal mechanism, which is sodium malabsorption. Future perspectives of Campylobacter research are the clarification of molecular pathomechanisms and the characterization of therapeutic and preventive compounds to combat and prevent Campylobacter infections.
Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Diarreia , Humanos , Mucosa Intestinal , Junções ÍntimasRESUMO
A change in claudin expression has been demonstrated in various tumors. The present study specifically compares claudin expression in oral squamous cell carcinoma (OSCC) with healthy oral epithelium from the same individual and analyzes the association between claudin expression and the clinically relevant course parameters. Our study includes tissue samples and clinically relevant follow-up data from 60 patients with primary and untreated OSCC. The oral mucosa was analyzed via Western blot for the expression of claudin-1, -2, -3, -4, -5, and -7. Importantly, the tumor and healthy tissues were obtained pairwise from patients, allowing for intraindividual comparisons. Both the healthy and tumor epithelium from the oral cavity did not express the claudin-3 protein. The intraindividual comparison revealed that, in OSCC, claudin-2 expression was higher, and the expression of claudin-4, -5, and -7 was lower than in healthy epithelium. An association was found between increased claudin-2 expression and shorter relapse-free survival. In addition, the reduced expression of claudin-4 had a negative impact on relapse-free survival. Furthermore, associations between the reduced expression of claudin-7 and the stage of a tumor, or the presence of lymph node metastases, were found. Thus, the expression level of claudin-2, -4, and -7 appears to be predictive of the diagnosis and prognosis of OSCC.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Claudina-1/metabolismo , Claudina-2 , Claudina-3/genética , Claudina-4/genética , Claudinas/genética , Claudinas/metabolismo , Humanos , Imuno-Histoquímica , Neoplasias Bucais/metabolismo , Recidiva Local de Neoplasia , Carcinoma de Células Escamosas de Cabeça e PescoçoRESUMO
BACKGROUND: Ulcerative colitis (UC) has a relapsing and remitting pattern, wherein the underlying mechanisms of the relapse might involve an enhanced uptake of luminal antigens which stimulate the immune response. The tricellular tight junction protein, tricellulin, takes charge of preventing paracellular passage of macromolecules. It is characterized by downregulated expression in active UC and its correct localization is regulated by angulins. We thus analyzed the tricellulin and angulin expression as well as intestinal barrier function and aimed to determine the role of tricellulin in the mechanisms of relapse. METHODS: Colon biopsies were collected from controls and UC patients who underwent colonoscopy at the central endoscopy department of Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin. Remission of UC was defined basing on the clinical appearance and a normal Mayo endoscopic subscore. Intestinal barrier function was evaluated by electrophysiological and paracellular flux measurements on biopsies mounted in Ussing chambers. RESULTS: The downregulated tricellulin expression in active UC was recovered in remission UC to control values. Likewise, angulins were in remission UC at the same levels as in controls. Also, the epithelial resistance which was decreased in active UC was restored in remission to the same range as in controls, along with the unaltered paracellular permeabilities for fluorescein and FITC-dextran 4 kDa. CONCLUSIONS: In remission of UC, tricellulin expression level as well as intestinal barrier functions were restored to normal, after they were impaired in active UC. This points toward a re-sealing of the impaired tricellular paracellular pathway and abated uptake of antigens to normal rates in remission of UC.
Assuntos
Colite Ulcerativa , Proteínas de Junções Íntimas , Transporte Biológico , Colite Ulcerativa/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Permeabilidade , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismoRESUMO
Campylobacter concisus is a human-pathogenic bacterium of the gastrointestinal tract. This study aimed at the contribution of the mucosal immune system in the context of intestinal epithelial barrier dysfunction induced by C. concisus. As an experimental leaky gut model, we used in vitro co-cultures of colonic epithelial cell monolayers (HT-29/B6-GR/MR) with M1-macrophage-like THP-1 cells on the basal side. Forty-eight hours after C. concisus infection, the decrease in the transepithelial electrical resistance in cell monolayers was more pronounced in co-culture condition and 22 ± 2% (p < 0.001) higher than the monoculture condition without THP-1 cells. Concomitantly, we observed a reduction in the expression of the tight junction proteins occludin and tricellulin. We also detected a profound increase in 4 kDa FITC-dextran permeability in C. concisus-infected cell monolayers only in co-culture conditions. This is explained by loss of tricellulin from tricellular tight junctions (tTJs) after C. concisus infection. As an underlying mechanism, we observed an inflammatory response after C. concisus infection through pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) released from THP-1 cells in the co-culture condition. In conclusion, the activation of subepithelial immune cells exacerbates colonic epithelial barrier dysfunction by C. concisus through tricellulin disruption in tTJs, leading to increased antigen permeability (leaky gut concept).
Assuntos
Campylobacter/imunologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Apoptose , Linhagem Celular , Sobrevivência Celular , Técnicas de Cocultura , Impedância Elétrica , Células Epiteliais/patologia , Humanos , Inflamação/patologia , Intestinos/microbiologia , Intestinos/patologia , Macrófagos/metabolismo , Modelos Biológicos , Ocludina/metabolismo , Frações Subcelulares/metabolismo , Junções Íntimas/metabolismoRESUMO
Infections by the zoonotic foodborne bacterium Campylobacter jejuni (C. jejuni) are among the most frequent causes of bacterial gastroenteritis worldwide. The aim was to evaluate the relationship between epithelial barrier disruption, mucosal immune activation, and vitamin D (VD) treatment during C. jejuni infection, using intestinal epithelial cells and mouse models focused on the interaction of C. jejuni with the VD signaling pathway and VD treatment to improve C. jejuni-induced barrier dysfunction. Our RNA-Seq data from campylobacteriosis patients demonstrate inhibition of VD receptor (VDR) downstream targets, consistent with suppression of immune function. Barrier-preserving effects of VD addition were identified in C. jejuni-infected epithelial cells and IL-10-/- mice. Furthermore, interference of C. jejuni with the VDR pathway was shown via VDR/retinoid X receptor (RXR) interaction. Paracellular leakiness of infected epithelia correlated with tight junction (TJ) protein redistribution off the TJ domain and apoptosis induction. Supplementation with VD reversed barrier impairment and prevented inhibition of the VDR pathway, as shown by restoration of transepithelial electrical resistance and fluorescein (332 Da) permeability. We conclude that VD treatment restores gut epithelial barrier functionality and decreases bacterial transmigration and might, therefore, be a promising compound for C. jejuni treatment in humans and animals.
Assuntos
Infecções por Campylobacter/complicações , Permeabilidade da Membrana Celular , Células Epiteliais/efeitos dos fármacos , Interleucina-10/fisiologia , Mucosa Intestinal/efeitos dos fármacos , Vitamina D/farmacologia , Animais , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/isolamento & purificação , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Junções Íntimas/metabolismo , Vitaminas/farmacologiaRESUMO
Mucosal healing determined by endoscopy is currently the remission standard for ulcerative colitis (UC). However, new criteria for remission are emerging, such as histologic normalization, which appears to correlate better to the risk of relapse. Here, we study mucosal healing on a molecular and functional level in quiescent UC. We obtained endoscopic biopsies from 33 quiescent UC patients and from 17 controls. Histology was assessed using Geboes score. Protein and mRNA levels were evaluated for the tight junction proteins claudin-2, claudin-4, occludin, and tricellulin, as well as Cl-/HCO3- exchanger DRA, and cyclo-oxygenase enzymes (COX-1, COX-2). The mucosal activity of COX-1 and COX-2 enzymes was assessed in modified Ussing chambers, measuring electrogenic ion transport (short-circuit current, SCC). Chronic inflammation was present in most UC patients. The protein level of claudin-4 was reduced, while mRNA-levels of claudin-2 and claudin-4 were upregulated in UC patients. Surprisingly, the mRNA level of COX-1 was downregulated, but was unaltered for COX-2. Basal ion transport was not affected, while COX-2 inhibition induced a two-fold larger decrease in SCC in UC patients. Despite being in clinical and endoscopic remission, quiescent UC patients demonstrated abnormal mucosal barrier properties at the molecular and functional level. Further exploration of mucosal molecular signature for revision of current remission standards should be considered.
Assuntos
Claudina-1/genética , Claudinas/genética , Colite Ulcerativa/patologia , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/genética , Proteína 2 com Domínio MARVEL/genética , Adulto , Idoso , Biópsia , Estudos de Casos e Controles , Claudina-1/metabolismo , Claudinas/metabolismo , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Proteína 2 com Domínio MARVEL/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
The epithelial sodium channel (ENaC) can increase the colonic absorptive capacity for salt and water. Campylobacter concisus is a common pathogenic epsilonproteobacterium, causing enteritis and diarrhea. It can induce barrier dysfunction in the intestine, but its influence on intestinal transport function is still unknown. Therefore, our study aimed to characterize C. concisus effects on ENaC using the HT-29/B6-GR/MR (epithelial cell line HT-29/B6 transfected with glucocorticoid and mineralocorticoid receptors) cell model and mouse colon. In Ussing chambers, C. concisus infection inhibited ENaC-dependent Na+ transport as indicated by a reduction in amiloride-sensitive short circuit current (-55%, n = 15, p < 0.001). This occurred via down-regulation of ß- and γ-ENaC mRNA expression and ENaC ubiquitination due to extracellular signal-regulated kinase (ERK)1/2 activation, predicted by Ingenuity Pathway Analysis (IPA). In parallel, C. concisus reduced the expression of the sealing tight junction (TJ) protein claudin-8 and induced claudin-8 redistribution off the TJ domain of the enterocytes, which facilitates the back leakage of Na+ ions into the intestinal lumen. In conclusion, C. concisus caused ENaC dysfunction via interleukin-32-regulated ERK1/2, as well as claudin-8-dependent barrier dysfunction-both of which contribute to Na+ malabsorption and diarrhea.
Assuntos
Infecções por Campylobacter/metabolismo , Campylobacter/fisiologia , Claudinas/metabolismo , Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , Animais , Infecções por Campylobacter/microbiologia , Colo/metabolismo , Colo/microbiologia , Diarreia/metabolismo , Diarreia/microbiologia , Células HT29 , Interações Hospedeiro-Patógeno , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Klebsiella oxytoca causes antibiotic-associated hemorrhagic colitis and diarrhea. This was attributed largely to its secreted cytotoxins tilivalline and tilimycin, inductors of epithelial apoptosis. To study whether Klebsiella oxytoca exerts further barrier effects, T84 monolayers were challenged with bacterial supernatants derived from tilivalline/tilimycin-producing AHC6 or its isogeneic tilivalline/tilimycin-deficient strain Mut-89. Both preparations decreased transepithelial resistance, enhanced fluorescein and FITC-dextran-4kDa permeabilities, and reduced expression of barrier-forming tight junction proteins claudin-5 and -8. Laser scanning microscopy indicated redistribution of both claudins off the tight junction region in T84 monolayers as well as in colon crypts of mice infected with AHC6 or Mut-89, indicating that these effects are tilivalline/tilimycin-independent. Furthermore, claudin-1 was affected, but only in a tilivalline/tilimycin-dependent manner. In conclusion, Klebsiella oxytoca induced intestinal barrier impairment by two mechanisms: the tilivalline/tilimycin-dependent one, acting by increasing cellular apoptosis and a tilivalline/tilimycin-independent one, acting by weakening the paracellular pathway through the tight junction proteins claudin-5 and -8.
Assuntos
Toxinas Bacterianas/farmacologia , Benzodiazepinas/farmacologia , Benzodiazepinonas/farmacologia , Intestinos/patologia , Klebsiella oxytoca/efeitos dos fármacos , Pirróis/farmacologia , Junções Íntimas/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Impedância Elétrica , Células Epiteliais/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacosRESUMO
Campylobacter jejuni (C. jejuni) is the most common cause of foodborne gastroenteritis worldwide. The bacteria induce diarrhea and inflammation by invading the intestinal epithelium. Curcumin is a natural polyphenol from turmeric rhizome of Curcuma longa, a medical plant, and is commonly used in curry powder. The aim of this study was the investigation of the protective effects of curcumin against immune-induced epithelial barrier dysfunction in C. jejuni infection. The indirect C. jejuni-induced barrier defects and its protection by curcumin were analyzed in co-cultures with HT-29/B6-GR/MR epithelial cells together with differentiated THP-1 immune cells. Electrophysiological measurements revealed a reduction in transepithelial electrical resistance (TER) in infected co-cultures. An increase in fluorescein (332 Da) permeability in co-cultures as well as in the germ-free IL-10-/- mouse model after C. jejuni infection was shown. Curcumin treatment attenuated the C. jejuni-induced increase in fluorescein permeability in both models. Moreover, apoptosis induction, tight junction redistribution, and an increased inflammatory response-represented by TNF-α, IL-1ß, and IL-6 secretion-was observed in co-cultures after infection and reversed by curcumin. In conclusion, curcumin protects against indirect C. jejuni-triggered immune-induced barrier defects and might be a therapeutic and protective agent in patients.
Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Infecções por Campylobacter/imunologia , Campylobacter jejuni/imunologia , Curcumina/farmacologia , Mucosa/efeitos dos fármacos , Mucosa/imunologia , Animais , Apoptose , Infecções por Campylobacter/microbiologia , Linhagem Celular , Técnicas de Cocultura , Citocinas/biossíntese , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Knockout , Mucosa/microbiologia , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/genética , Junções Íntimas/metabolismoRESUMO
Coeliac disease is one of the most common diseases worldwide, with an estimated global prevalence of 0.5â-â1â%. The disease is triggered by a combination of environmental (gluten proteins from wheat, rye or barley) and genetic factors (mainly the human leucocyte antigens HLA-DQ2 or -DQ8). At present, a strict gluten-free diet (GFD) represents the only treatment option. However, strict adherence to a GFD is challenging, since even highly motivated patients may be subject to inadvertent or background exposure to gluten. Thus, rigorous avoidance of gluten necessitates extensive constraint of patients' food choices and social interactions. Moreover, even in fully adherent patients, a GFD may fail to induce clinical or histological normalisation. New (adjunctive) non-dietary therapeutic strategies for patients with coeliac disease are therefore of great interest. In this review, on the basis of the current understanding of its pathophysiology, we examine and discuss novel pharmacological approaches for the treatment of coeliac disease.
Assuntos
Doença Celíaca/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Transglutaminases/metabolismo , Autoantígenos/imunologia , Doença Celíaca/imunologia , Doença Celíaca/fisiopatologia , Tratamento Farmacológico/tendências , HumanosRESUMO
Clostridium perfringens enterotoxin (CPE) causes food poisoning and antibiotic-associated diarrhea. It uses some claudin tight junction proteins (eg, claudin-4) as receptors to form Ca2+-permeable pores in the membrane, damaging epithelial cells in small intestine and colon. We demonstrate that only a subpopulation of colonic enterocytes which are characterized by apical dislocation of claudins are CPE-susceptible. CPE-mediated damage was enhanced if paracellular barrier was impaired by Ca2+ depletion, proinflammatory cytokine tumor necrosis factor α, or dedifferentiation. Microscopy, Ca2+ monitoring, and electrophysiological data showed that CPE-mediated cytotoxicity and barrier disruption was limited by extent of CPE-binding. The latter was restricted by accessibility of non-junctional claudin molecules such as claudin-4 at apical membranes. Focal-leaks detected in HT-29/B6 colonic monolayers were verified for native tissue using colon biopsies. These mechanistic findings indicate how CPE-mediated effects may turn from self-limiting diarrhea into severe clinical manifestation such as colonic necrosis-if intestinal barrier dysfunction, eg, during inflammation facilitates claudin accessibility.
Assuntos
Claudinas/antagonistas & inibidores , Infecções por Clostridium/patologia , Clostridium perfringens/patogenicidade , Colo/patologia , Enterotoxinas/toxicidade , Doenças Transmitidas por Alimentos/patologia , Junções Íntimas/patologia , Linhagem Celular , Enterócitos/patologia , Humanos , Mucosa Intestinal/patologia , PermeabilidadeRESUMO
Intestinal inflammatory diseases, four of which are discussed here, are associated with alterations of claudins. In ulcerative colitis, diarrhea and antigen entry into the mucosa occurs. Claudin-2 is upregulated but data on other claudins are still limited or vary (e.g., claudin-1 and -4). Apart from that, tight junction changes contribute to diarrhea via a leak flux mechanism, while protection against antigen entry disappears behind epithelial gross lesions (erosions) and apoptotic foci. Crohn's disease is additionally characterized by a claudin-5 and claudin-8 reduction which plays an active role in antigen uptake already before gross lesions appear. In microscopic colitis (MC), upregulation of claudin-2 expression is weak and a reduction in claudin-4 may be only passively involved, while sodium malabsorption represents the main diarrheal mechanism. However, claudin-5 is removed from MC tight junctions which may be an active trigger for inflammation through antigen uptake along the so-called leaky gut concept. In celiac disease, primary barrier defects are discussed in the context of candidate genes as PARD3 which regulate cell polarity and tight junctions. The loss of claudin-5 allows small antigens to invade, while the reductions in others like claudin-3 are rather passive events. Taken together, the specific role of single tight junction proteins for the onset and perpetuation of inflammation and the recovery from these diseases is far from being fully understood and is clearly dependent on the stage of the disease, the background of the other tight junction components, the transport activity of the mucosa, and the presence of other barrier features like gross lesions, an orchestral interplay which is discussed in this article.
Assuntos
Claudinas/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Animais , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Regulação para Cima/fisiologiaRESUMO
PURPOSE: Myrrh, the oleo-gum resin of Commiphora molmol, is well known for its anti-inflammatory properties. In different animal models, it protected against DSS-, TNBS- and oxazolone-induced colitis. To date, no information concerning the effect of myrrh on barrier properties are available. Thus, this study investigates the effect of myrrh on paracellular barrier function in the absence or presence of the pro-inflammatory cytokine TNFα. METHODS: Monolayers of human colon cell lines HT-29/B6 and Caco-2 were incubated with myrrh under control conditions or after challenge with the pro-inflammatory cytokine TNFα. Barrier function was analysed by electrophysiological and permeability measurements, Western blotting, immunostaining in combination with confocal microscopy, and freeze-fracture electron microscopy. RESULTS: In Caco-2 cells, myrrh induced an increase in transepithelial resistance (TER) which was associated with downregulation of the channel-forming tight junction (TJ) protein claudin-2 via inhibition of the PI3 kinase signalling pathway. In HT-29/B6 cells, myrrh had no effect on barrier properties under basic conditions, but protected against barrier damage induced by TNFα, as indicated by a decrease in TER and an increase in fluorescein permeability. The TNFα effect was associated with a redistribution of the sealing TJ protein claudin-1, an increase in the expression of claudin-2 and a change in TJ ultrastructure. Most importantly, all TNFα effects were inhibited by myrrh. The effect of myrrh on claudin-2 expression in this cell line was mediated via inhibition of the STAT6 pathway. CONCLUSIONS: This study shows for the first time that myrrh exerts barrier-stabilising and TNFα-antagonising effects in human intestinal epithelial cell models via inhibition of PI3K and STAT6 signalling. This suggests therapeutic application of myrrh in intestinal diseases associated with barrier defects and inflammation.
Assuntos
Enterócitos/citologia , Substâncias Protetoras/farmacologia , Resinas Vegetais/farmacologia , Células CACO-2 , Camomila/química , Carvão Vegetal/farmacologia , Café/química , Commiphora , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Células HT29 , Humanos , Modelos Biológicos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
PURPOSE: Irritable bowel syndrome (IBS) is common but therapies are unsatisfactory. Food is often suspected as cause by patients, but diagnostic procedures, apart from allergy testing, are limited. Based on the hypothesis of non-celiac wheat sensitivity (WS) in a subgroup of IBS patients, we tested the long-term response to a gluten-free diet (GFD) and investigated HLA-DQ2 or -DQ8 expression as a diagnostic marker for WS in diarrhea-dominant (IBS-D) and mixed-type IBS (IBS-M). METHODS: The response to a GFD served as reference test for WS and HLA-DQ2/8 expression was determined as index test. Patients were classified as responders if they reported complete or considerable relief of IBS symptoms on at least 75 % of weeks over a 4-month period of gluten-free diet. Established questionnaires (IBS-Quality of Life (IBS-QoL), IBS Symptom Severity Scale (IBS-SSS), European Quality of Life-5 Dimensions (EQ-5D)) were used for secondary outcome measures. RESULTS: Thirty-five patients finished the study. Of these, 12 (34 %) were responders and classified as having WS (95 % CI 21-51 %). HLA-DQ2/8 expression had a specificity of 52 % (95 % CI 33-71 %) and sensitivity of 25 % (95 % CI 8-54 %) for WS. Responders showed improvement in quality of life and symptom scores. At 1-year follow-up, all responders and 55 % of non-responders were still on GFD and reported symptom relief. CONCLUSION: Using strict criteria as recommended for IBS studies, about one third of patients with IBS-D or IBS-M are wheat sensitive, with a similar proportion in both IBS types. Expression of HLA-DQ2/8 is not useful as diagnostic marker for WS. Long-term adherence to a GFD is high and can sustain symptomatic improvement.
Assuntos
Doença Celíaca/complicações , Diarreia/complicações , Diarreia/dietoterapia , Dieta Livre de Glúten , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/dietoterapia , Triticum/efeitos adversos , Adulto , Idoso , Comportamento Alimentar , Feminino , Seguimentos , Antígenos HLA-DQ/imunologia , Humanos , Síndrome do Intestino Irritável/imunologia , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Inquéritos e Questionários , Fatores de Tempo , Resultado do TratamentoRESUMO
Claudins form a large family of TJ (tight junction) proteins featuring four transmembrane segments (TM1-TM4), two extracellular loops, one intracellular loop and intracellular N- and C-termini. They form continuous and branched TJ strands by homo- or heterophilic interaction within the same membrane (cis-interaction) and with claudins of the opposing lateral cell membrane (trans-interaction). In order to clarify the molecular organization of TJ strand formation, we investigated the cis-interaction of two abundant prototypic claudins. Human claudin-1 and claudin-3, fused to ECFP or EYFP at the N- or C-terminus, were expressed in the TJ-free cell line HEK (human embryonic kidney)-293. Using FRET analysis, the proximity of claudin N- and C-termini integrated in homopolymeric strands composed of claudin-3 or of heteropolymeric strands composed of claudin-1 and claudin-3 were determined. The main results are that (i) within homo- and heteropolymers, the average distance between the cytoplasmic ends of the TM1s of cis-interacting claudin molecules is shorter than the average distance between their TM4s, and (ii) TM1 segments of neighbouring claudins are oriented towards each other as the cytoplasmic end of TM1 is in close proximity to more other TM1 segments than TM4 is to other TM4 segments. The results indicate at least two different cis-interaction interfaces within claudin-3 homopolymers as well as within claudin-1/claudin-3 heteropolymers. The data provide novel insight into the molecular TJ architecture consistent with a model with an antiparallel double-row cis-arrangement of classic claudin protomers within strands.
Assuntos
Claudina-1/química , Claudina-3/química , Modelos Moleculares , Junções Íntimas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Claudina-3/genética , Claudina-3/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Citometria de Varredura a Laser , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Simulação de Acoplamento Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Junções Íntimas/metabolismoRESUMO
Grainyhead transcription factors control epithelial barriers, tissue morphogenesis, and differentiation, but their role in the kidney is poorly understood. Here, we report that nephric duct, ureteric bud, and collecting duct epithelia express high levels of grainyhead-like homolog 2 (Grhl2) and that nephric duct lumen expansion is defective in Grhl2-deficient mice. In collecting duct epithelial cells, Grhl2 inactivation impaired epithelial barrier formation and inhibited lumen expansion. Molecular analyses showed that GRHL2 acts as a transcriptional activator and strongly associates with histone H3 lysine 4 trimethylation. Integrating genome-wide GRHL2 binding as well as H3 lysine 4 trimethylation chromatin immunoprecipitation sequencing and gene expression data allowed us to derive a high-confidence GRHL2 target set. GRHL2 transactivated a group of genes including Ovol2, encoding the ovo-like 2 zinc finger transcription factor, as well as E-cadherin, claudin 4 (Cldn4), and the small GTPase Rab25. Ovol2 induction alone was sufficient to bypass the requirement of Grhl2 for E-cadherin, Cldn4, and Rab25 expression. Re-expression of either Ovol2 or a combination of Cldn4 and Rab25 was sufficient to rescue lumen expansion and barrier formation in Grhl2-deficient collecting duct cells. Hence, we identified a Grhl2/Ovol2 network controlling Cldn4 and Rab25 expression that facilitates lumen expansion and barrier formation in subtypes of renal epithelia.
Assuntos
Epitélio/metabolismo , Regulação da Expressão Gênica , Rim/embriologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Claudina-4/metabolismo , DNA/química , Técnicas de Transferência de Genes , Histonas/química , Humanos , Imuno-Histoquímica , Rim/metabolismo , Túbulos Renais Coletores/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Ligação Proteica , Proteínas/metabolismo , Transdução de Sinais , Transcrição GênicaRESUMO
KEY POINTS: Interleukin-13 (IL-13) causes intestinal epithelial barrier dysfunction, and is implicated in the pathogenesis of Th2-driven intestinal inflammation (e.g. ulcerative colitis). However, it is unclear whether the epithelial sodium channel (ENaC) - the main limiting factor for sodium absorption in the distal colon - is also influenced by IL-13 and if so, by what mechanism(s). We demonstrate in an intestinal cell model as well as in mouse distal colon that IL-13 causes reduced ENaC activity. We show that IL-13 impairs ENaC-dependent sodium transport by activating the JAK1/2-STAT6 signalling pathway. These results improve our understanding of the mechanisms through which IL-13 functions as a key effector cytokine in ulcerative colitis, thereby contributing to the distinct pathology of this disease. ABSTRACT: Interleukin-13 (IL-13) has been strongly implicated in the pathogenesis of ulcerative colitis, possibly by disrupting epithelial integrity. In the distal colon, the epithelial sodium channel (ENaC) is an important factor in the regulation of sodium absorption, and therefore plays a critical role in minimizing intestinal sodium and water losses. In the present study, we investigated whether IL-13 also acts as a potent modulator of epithelial sodium transport via ENaC, and the signalling components involved. The effect of IL-13 on ENaC was examined in HT-29/B6-GR/MR human colon cells, as well as in mouse distal colon, by measuring amiloride-sensitive short-circuit current (ISC ) in Ussing chambers. The expression levels of ENaC subunits and the cellular components that contribute to ENaC activity were analysed by qRT-PCR and promoter gene assay. We show that IL-13, in both the cell model and in native intestinal tissue, impaired epithelial sodium absorption via ENaC (JNa ) as a result of decreased transcription levels of ß- and γ-ENaC subunits and SGK1, a post-translational regulator of ENaC activity, due to impaired promoter activity. The reduction in JNa was prevented by inhibition of JAK1/2-STAT6 signalling. This inhibition also affected the IL-13-induced decrease in p38 MAPK phosphorylation. The contribution of STAT6 to IL-13-mediated ENaC inactivation was confirmed in a STAT6(-/-) mouse model. In conclusion, these results indicate that IL-13, the levels of which are elevated in ulcerative colitis, contributes to impaired ENaC activity via modulation of the STAT6/p38 MAPK pathways.
Assuntos
Canais Epiteliais de Sódio/metabolismo , Interleucina-13/farmacologia , Mucosa Intestinal/metabolismo , Fator de Transcrição STAT6/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Células HT29 , Humanos , Absorção Intestinal , Mucosa Intestinal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Sódio/metabolismoRESUMO
Cancer patients, in general, suffer from anorexia hence diminished nutritional intake. In a prospective observational study, we investigated the impact of recent energy and protein intake on cancer-related fatigue and 6-month mortality in patients undergoing chemotherapy. Recent protein and energy intake was assessed by 24-h recall in 285 patients. Cancer-related fatigue was determined by Brief Fatigue Inventory, and fat free mass index (FFMI) was assessed with bioelectrical impedance analysis. Symptoms with the validated German version of European Organization for Research and Treatment of Cancer Quality of Life Core Questionnaire (30 questions) and 6-month mortality was documented. Risk factors of cancer-related fatigue and predictors of mortality were investigated with logistic regression analysis and stepwise Cox regression analysis, respectively. Low protein intake (<1 g/kg body weight) was found in 66% of patients, who were characterized by higher age, weight, and body mass index. Recent protein intake emerged as the strongest contributor to cancer-related fatigue followed by nausea/vomiting, insomnia, and age. Reduced protein intake, male sex, number of comorbidities, and FFMI were identified as significant predictors for increased 6-month mortality. In conclusion, a low recent protein intake assessed by 24-h recall is associated with a more than twofold higher risk of cancer-related fatigue and 6-month mortality. Every effort should be taken to assess and guarantee proper nutritional intake in patients undergoing chemotherapy.
Assuntos
Proteínas Alimentares/administração & dosagem , Ingestão de Energia , Fadiga/etiologia , Neoplasias/mortalidade , Idoso , Antineoplásicos/uso terapêutico , Índice de Massa Corporal , Fadiga/fisiopatologia , Feminino , Inquéritos Epidemiológicos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia , Estado Nutricional , Modelos de Riscos Proporcionais , Estudos Prospectivos , Fatores de Risco , AutorrelatoRESUMO
New treatment strategies for inflammatory bowel disease are needed and parasitic nematode infections or application of helminth components improve clinical and experimental gut inflammation. We genetically modified the probiotic bacterium Escherichia coli Nissle 1917 to secrete the powerful nematode immunomodulator cystatin in the gut. This treatment was tested in a murine colitis model and on post-weaning intestinal inflammation in pigs, an outbred model with a gastrointestinal system similar to humans. Application of the transgenic probiotic significantly decreased intestinal inflammation in murine acute colitis, associated with increased frequencies of Foxp3(+) Tregs, suppressed local interleukin (IL)-6 and IL-17A production, decreased macrophage inflammatory protein-1α/ß, monocyte chemoattractant protein -1/3, and regulated upon activation, normal T-cell expressed, and secreted expression and fewer inflammatory macrophages in the colon. High dosages of the transgenic probiotic were well tolerated by post-weaning piglets. Despite being recognized by T cells, secreted cystatin did not lead to changes in cytokine expression or macrophage activation in the colon. However, colon transepithelial resistance and barrier function were significantly improved in pigs receiving the transgenic probotic and post-weaning colon inflammation was reduced. Thus, the anti-inflammatory efficiency of a probiotic can be improved by a nematode-derived immunoregulatory transgene. This treatment regimen should be further investigated as a potential therapeutic option for inflammatory bowel disease.
Assuntos
Gastroenterite/terapia , Fatores Imunológicos/biossíntese , Fatores Imunológicos/genética , Probióticos/metabolismo , Probióticos/uso terapêutico , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colite/terapia , Cistatinas/biossíntese , Cistatinas/genética , Cistatinas/imunologia , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/metabolismo , Gastroenterite/imunologia , Gastroenterite/metabolismo , Gastroenterite/parasitologia , Expressão Gênica , Fatores Imunológicos/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Probióticos/administração & dosagem , Probióticos/efeitos adversos , SuínosRESUMO
OBJECTIVE: α-Haemolysin (HlyA) influences host cell ionic homeostasis and causes concentration-dependent cell lysis. As a consequence, HlyA-producing Escherichia coli is capable of inducing 'focal leaks' in colon epithelia, through which bacteria and antigens translocate. This study addressed the role of HlyA as a virulence factor in the pathogenesis of colitis according to the 'leaky gut' concept. DESIGN: To study the action of HlyA in the colon, we performed oral administration of HlyA-expressing E coli-536 and its isogenic α-haemolysin-deficient mutant (HDM) in three mouse models: wild type, interleukin-10 knockout mice (IL-10(-/-)) and monoassociated mice. Electrophysiological properties of the colonised colon were characterised in Ussing experiments. Inflammation scores were evaluated and focal leaks in the colon were assessed by confocal laser-scanning microscopy. HlyA quantity in human colon biopsies was measured by quantitative PCR. RESULTS: All three experimental mouse models infected with HlyA-producing E coli-536 showed an increase in focal leak area compared with HDM. This was associated with a decrease in transepithelial electrical resistance and an increase in macromolecule uptake. As a consequence, inflammatory activity index was increased to a higher degree in inflammation-prone mice. Mucosal samples from human colon were E coli HlyA-positive in 19 of 22 patients with ulcerative colitis, 9 of 9 patients with Crohn's disease and 9 of 12 healthy controls. Moreover, focal leaks were found together with 10-fold increased levels of HlyA in active ulcerative colitis. CONCLUSIONS: E coli HlyA impairs intestinal barrier function via focal leak induction in the epithelium, thereby intensifying antigen uptake and triggering intestinal inflammation in vulnerable mouse models. Therefore, HlyA-expressing E coli strains should be considered as potential cofactors in the pathogenesis of intestinal inflammation.