Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373061

RESUMO

Neutrophil granulocytes (NGs) are among the key players in the defense against Aspergillus fumigatus (A. fumigatus). To better elucidate a pathophysiological understanding of their role and functions, we applied a human cell model using NGs from healthy participants and septic patients to evaluate their inhibitory effects on the growth of A. fumigatus ex vivo. Conidia of A. fumigatus (ATCC® 204305) were co-incubated with NGs from healthy volunteers or septic patients for 16 h. A. fumigatus growth was measured by XTT assays with a plate reader. The inhibitory effect of NGs on 18 healthy volunteers revealed great heterogeneity. Additionally, growth inhibition was significantly stronger in the afternoon than the morning, due to potentially different cortisol levels. It is particularly interesting that the inhibitory effect of NGs was reduced in patients with sepsis compared to healthy controls. In addition, the magnitude of the NG-driven defense against A. fumigatus was highly variable among healthy volunteers. Moreover, daytime and corresponding cortisol levels also seem to have a strong influence. Most interestingly, preliminary experiments with NGs from septic patients point to a strongly diminished granulocytic defense against Aspergillus spp.


Assuntos
Aspergilose , Aspergillus fumigatus , Humanos , Voluntários Saudáveis , Hidrocortisona , Granulócitos
2.
Vaccines (Basel) ; 11(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36851312

RESUMO

BACKGROUND: It is widely accepted that SARS-CoV-2 causes a dysregulation of immune and coagulation processes. In severely affected patients, viral sepsis may result in life endangering multiple organ dysfunction. Furthermore, most therapies for COVID-19 patients target either the immune system or coagulation processes. As the exact mechanism causing SARS-CoV-2-induced morbidity and mortality was unknown, we started an in-depth analysis of immunologic and coagulation processes. METHODS: 127 COVID-19 patients were treated at the University Hospital Essen, Germany, between May 2020 and February 2022. Patients were divided according to their maximum COVID-19 WHO ordinal severity score (WHO 0-10) into hospitalized patients with a non-severe course of disease (WHO 4-5, n = 52) and those with a severe course of disease (WHO 6-10, n = 75). Non-infected individuals served as healthy controls (WHO 0, n = 42). Blood was analyzed with respect to cell numbers, clotting factors, as well as pro- and anti-inflammatory mediators in plasma. As functional parameters, phagocytosis and inflammatory responses to LPS and antigen-specific stimulation were determined in monocytes, granulocytes, and T cells using flow cytometry. FINDINGS: In the present study, immune and coagulation systems were analyzed simultaneously. Interestingly, many severe COVID-19 patients showed an upregulation of pro-inflammatory mediators and at the same time clear signs of immunosuppression. Furthermore, severe COVID-19 patients not only exhibited a disturbed immune system, but in addition showed a pronounced pro-coagulation phenotype with impaired fibrinolysis. Therefore, our study adds another puzzle piece to the already complex picture of COVID-19 pathology implying that therapies in COVID-19 must be individualized. CONCLUSION: Despite years of research, COVID-19 has not been understood completely and still no therapies exist, fitting all requirements and phases of COVID-19 disease. This observation is highly reminiscent to sepsis. Research in sepsis has been going on for decades, while the disease is still not completely understood and therapies fitting all patients are lacking as well. In both septic and COVID-19 patients, immune activation can be accompanied by immune paralysis, complicating therapeutic intervention. Accordingly, therapies that lower immune activation may cause detrimental effects in patients, who are immune paralyzed by viral infections or sepsis. We therefore suggest individualizing therapies and to broaden the spectrum of immunological parameters analyzed before therapy. Only if the immune status of a patient is understood, can a therapeutic intervention be successful.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA