Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 184(8): 2103-2120.e31, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33740419

RESUMO

During cell migration or differentiation, cell surface receptors are simultaneously exposed to different ligands. However, it is often unclear how these extracellular signals are integrated. Neogenin (NEO1) acts as an attractive guidance receptor when the Netrin-1 (NET1) ligand binds, but it mediates repulsion via repulsive guidance molecule (RGM) ligands. Here, we show that signal integration occurs through the formation of a ternary NEO1-NET1-RGM complex, which triggers reciprocal silencing of downstream signaling. Our NEO1-NET1-RGM structures reveal a "trimer-of-trimers" super-assembly, which exists in the cell membrane. Super-assembly formation results in inhibition of RGMA-NEO1-mediated growth cone collapse and RGMA- or NET1-NEO1-mediated neuron migration, by preventing formation of signaling-compatible RGM-NEO1 complexes and NET1-induced NEO1 ectodomain clustering. These results illustrate how simultaneous binding of ligands with opposing functions, to a single receptor, does not lead to competition for binding, but to formation of a super-complex that diminishes their functional outputs.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Oncogênicas/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/química , Movimento Celular , Receptor DCC/deficiência , Receptor DCC/genética , Proteínas Ligadas por GPI/química , Cones de Crescimento/fisiologia , Humanos , Ventrículos Laterais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Neurônios/citologia , Neurônios/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
2.
Mol Cell ; 81(24): 5025-5038.e10, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34890564

RESUMO

The Sonic Hedgehog (SHH) morphogen pathway is fundamental for embryonic development and stem cell maintenance and is implicated in various cancers. A key step in signaling is transfer of a palmitate group to the SHH N terminus, catalyzed by the multi-pass transmembrane enzyme Hedgehog acyltransferase (HHAT). We present the high-resolution cryo-EM structure of HHAT bound to substrate analog palmityl-coenzyme A and a SHH-mimetic megabody, revealing a heme group bound to HHAT that is essential for HHAT function. A structure of HHAT bound to potent small-molecule inhibitor IMP-1575 revealed conformational changes in the active site that occlude substrate binding. Our multidisciplinary analysis provides a detailed view of the mechanism by which HHAT adapts the membrane environment to transfer an acyl chain across the endoplasmic reticulum membrane. This structure of a membrane-bound O-acyltransferase (MBOAT) superfamily member provides a blueprint for other protein-substrate MBOATs and a template for future drug discovery.


Assuntos
Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas Hedgehog/metabolismo , Proteínas de Membrana/metabolismo , Acilação , Aciltransferases/genética , Aciltransferases/ultraestrutura , Regulação Alostérica , Animais , Células COS , Domínio Catalítico , Chlorocebus aethiops , Microscopia Crioeletrônica , Células HEK293 , Heme/metabolismo , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Simulação de Dinâmica Molecular , Palmitoil Coenzima A/metabolismo , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
3.
Mol Cell ; 75(3): 605-619.e6, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31255466

RESUMO

Accurate DNA replication is essential to preserve genomic integrity and prevent chromosomal instability-associated diseases including cancer. Key to this process is the cells' ability to stabilize and restart stalled replication forks. Here, we show that the EXD2 nuclease is essential to this process. EXD2 recruitment to stressed forks suppresses their degradation by restraining excessive fork regression. Accordingly, EXD2 deficiency leads to fork collapse, hypersensitivity to replication inhibitors, and genomic instability. Impeding fork regression by inactivation of SMARCAL1 or removal of RECQ1's inhibition in EXD2-/- cells restores efficient fork restart and genome stability. Moreover, purified EXD2 efficiently processes substrates mimicking regressed forks. Thus, this work identifies a mechanism underpinned by EXD2's nuclease activity, by which cells balance fork regression with fork restoration to maintain genome stability. Interestingly, from a clinical perspective, we discover that EXD2's depletion is synthetic lethal with mutations in BRCA1/2, implying a non-redundant role in replication fork protection.


Assuntos
DNA Helicases/genética , Replicação do DNA/genética , Exodesoxirribonucleases/genética , RecQ Helicases/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Instabilidade Genômica/genética , Células HeLa , Humanos , Neoplasias/genética , Mutações Sintéticas Letais/genética
4.
Mol Cell ; 57(6): 1133-1141, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25794620

RESUMO

The Bloom syndrome helicase BLM and topoisomerase-IIß-binding protein 1 (TopBP1) are key regulators of genome stability. It was recently proposed that BLM phosphorylation on Ser338 mediates its interaction with TopBP1, to protect BLM from ubiquitylation and degradation (Wang et al., 2013). Here, we show that the BLM-TopBP1 interaction does not involve Ser338 but instead requires BLM phosphorylation on Ser304. Furthermore, we establish that disrupting this interaction does not markedly affect BLM stability. However, BLM-TopBP1 binding is important for maintaining genome integrity, because in its absence cells display increased sister chromatid exchanges, replication origin firing and chromosomal aberrations. Therefore, the BLM-TopBP1 interaction maintains genome stability not by controlling BLM protein levels, but via another as-yet undetermined mechanism. Finally, we identify critical residues that mediate interactions between TopBP1 and MDC1, and between BLM and TOP3A/RMI1/RMI2. Taken together, our findings provide molecular insights into a key tumor suppressor and genome stability network.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Fosforilação , RecQ Helicases/genética , Serina/metabolismo , Transativadores/genética , Transativadores/metabolismo
5.
Mol Cell ; 60(3): 351-61, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26593718

RESUMO

DNA replication stress can cause chromosomal instability and tumor progression. One key pathway that counteracts replication stress and promotes faithful DNA replication consists of the Fanconi anemia (FA) proteins. However, how these proteins limit replication stress remains largely elusive. Here we show that conflicts between replication and transcription activate the FA pathway. Inhibition of transcription or enzymatic degradation of transcription-associated R-loops (DNA:RNA hybrids) suppresses replication fork arrest and DNA damage occurring in the absence of a functional FA pathway. Furthermore, we show that simple aldehydes, known to cause leukemia in FA-deficient mice, induce DNA:RNA hybrids in FA-depleted cells. Finally, we demonstrate that the molecular mechanism by which the FA pathway limits R-loop accumulation requires FANCM translocase activity. Failure to activate a response to physiologically occurring DNA:RNA hybrids may critically contribute to the heightened cancer predisposition and bone marrow failure of individuals with mutated FA proteins.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Instabilidade Genômica , Ácidos Nucleicos Heteroduplexes/metabolismo , Animais , DNA Helicases/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Células HeLa , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Camundongos , Camundongos Knockout , Mutação , Ácidos Nucleicos Heteroduplexes/genética
6.
Nat Chem Biol ; 15(10): 975-982, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31548691

RESUMO

Hedgehog (HH) ligands, classical morphogens that pattern embryonic tissues in all animals, are covalently coupled to two lipids-a palmitoyl group at the N terminus and a cholesteroyl group at the C terminus. While the palmitoyl group binds and inactivates Patched 1 (PTCH1), the main receptor for HH ligands, the function of the cholesterol modification has remained mysterious. Using structural and biochemical studies, along with reassessment of previous cryo-electron microscopy structures, we find that the C-terminal cholesterol attached to Sonic hedgehog (Shh) binds the first extracellular domain of PTCH1 and promotes its inactivation, thus triggering HH signaling. Molecular dynamics simulations show that this interaction leads to the closure of a tunnel through PTCH1 that serves as the putative conduit for sterol transport. Thus, Shh inactivates PTCH1 by grasping its extracellular domain with two lipidic pincers, the N-terminal palmitate and the C-terminal cholesterol, which are both inserted into the PTCH1 protein core.


Assuntos
Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Animais , Colesterol/química , Regulação da Expressão Gênica , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Camundongos , Modelos Moleculares , Células NIH 3T3 , Receptor Patched-1/química , Ligação Proteica , Conformação Proteica , Anticorpos de Domínio Único
7.
Methods ; 108: 92-8, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27102626

RESUMO

Faithful duplication of genetic material during every cell division is essential to ensure accurate transmission of genetic information to daughter cells. DNA helicases play a crucial role in promoting this process by facilitating almost all transactions occurring on DNA, including DNA replication and repair. They are responsible not only for DNA double helix unwinding ahead of progressing replication forks but also for resolution of secondary structures like G4 quadruplexes, HJ branch migration, double HJ dissolution, protein displacement, strand annealing and many more. Their importance in maintaining genome stability is underscored by the fact that many human disorders, including cancer, are associated with mutations in helicase genes. Here we outline how DNA fibre fluorography, a straightforward and inexpensive approach, can be employed to study the in vivo function of helicases in DNA replication and the maintenance of genome stability at a single molecule level. This approach directly visualizes the progression of individual replication forks within living cells and hence provides quantitative information on various aspects of DNA synthesis, such as replication fork processivity (replication speed), fork stalling, origin usage and fork termination.


Assuntos
DNA Helicases/genética , Replicação do DNA/genética , Engenharia Genética/métodos , DNA Helicases/química , Reparo do DNA/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Quadruplex G , Instabilidade Genômica/genética , Humanos
8.
Hum Mol Genet ; 21(9): 2005-16, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22279085

RESUMO

FANCM is the most highly conserved protein within the Fanconi anaemia (FA) tumour suppressor pathway. However, although FANCM contains a helicase domain with translocase activity, this is not required for its role in activating the FA pathway. Instead, we show here that FANCM translocaseactivity is essential for promoting replication fork stability. We demonstrate that cells expressing translocase-defective FANCM show altered global replication dynamics due to increased accumulation of stalled forks that subsequently degenerate into DNA double-strand breaks, leading to ATM activation, CTBP-interacting protein (CTIP)-dependent end resection and homologous recombination repair. Accordingly, abrogation of ATM or CTIP function in FANCM-deficient cells results in decreased cell survival. We also found that FANCM translocase activity protects cells from accumulating 53BP1-OPT domains, which mark lesions resulting from problems arising during replication. Taken together, these data show that FANCM plays an essential role in maintaining chromosomal integrity by promoting the recovery of stalled replication forks and hence preventing tumourigenesis.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Proteínas de Transporte de Nucleotídeos/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , Reparo do DNA , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Recombinação Homóloga , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Proteínas de Transporte de Nucleotídeos/antagonistas & inibidores , Proteínas de Transporte de Nucleotídeos/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
9.
EMBO J ; 29(4): 806-18, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20057355

RESUMO

Fanconi anaemia is a chromosomal instability disorder associated with cancer predisposition and bone marrow failure. Among the 13 identified FA gene products only one, the DNA translocase FANCM, has homologues in lower organisms, suggesting a conserved function in DNA metabolism. However, a precise role for FANCM in DNA repair remains elusive. Here, we show a novel function for FANCM that is distinct from its role in the FA pathway: promoting replication fork restart and simultaneously limiting the accumulation of RPA-ssDNA. We show that in DT40 cells this process is controlled by ATR and PLK1, and that in the absence of FANCM, stalled replication forks are unable to resume DNA synthesis and genome duplication is ensured by excess origin firing. Unexpectedly, we also uncover an early role for FANCM in ATR-mediated checkpoint signalling by promoting chromatin retention of TopBP1. Failure to retain TopBP1 on chromatin impacts on the ability of ATR to phosphorylate downstream molecular targets, including Chk1 and SMC1. Our data therefore indicate a fundamental role for FANCM in the maintenance of genome integrity during S phase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas Aviárias/deficiência , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Linhagem Celular , Quinase 1 do Ponto de Checagem , Galinhas , Cromatina/metabolismo , DNA Helicases/deficiência , DNA Helicases/genética , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fase S , Transdução de Sinais , Estresse Fisiológico , Proteínas Supressoras de Tumor/metabolismo , Quinase 1 Polo-Like
10.
Nat Commun ; 12(1): 7171, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887403

RESUMO

Hedgehog (HH) morphogen signalling, crucial for cell growth and tissue patterning in animals, is initiated by the binding of dually lipidated HH ligands to cell surface receptors. Hedgehog-Interacting Protein (HHIP), the only reported secreted inhibitor of Sonic Hedgehog (SHH) signalling, binds directly to SHH with high nanomolar affinity, sequestering SHH. Here, we report the structure of the HHIP N-terminal domain (HHIP-N) in complex with a glycosaminoglycan (GAG). HHIP-N displays a unique bipartite fold with a GAG-binding domain alongside a Cysteine Rich Domain (CRD). We show that HHIP-N is required to convey full HHIP inhibitory function, likely by interacting with the cholesterol moiety covalently linked to HH ligands, thereby preventing this SHH-attached cholesterol from binding to the HH receptor Patched (PTCH1). We also present the structure of the HHIP C-terminal domain in complex with the GAG heparin. Heparin can bind to both HHIP-N and HHIP-C, thereby inducing clustering at the cell surface and generating a high-avidity platform for SHH sequestration and inhibition. Our data suggest a multimodal mechanism, in which HHIP can bind two specific sites on the SHH morphogen, alongside multiple GAG interactions, to inhibit SHH signalling.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Transdução de Sinais , Proteínas de Transporte/genética , Colesterol/química , Colesterol/metabolismo , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Ligantes , Glicoproteínas de Membrana/genética , Ligação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA