Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2369, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759524

RESUMO

Vortex rings can easily be generated in the laboratory or with homemade devices, but they have also been observed on volcanoes, since the eighteenth century. However, the physical conditions under which volcanic vortex rings form are still unknown. In order to better understand this phenomenon and provide clues on the dynamics of the volcanic vortex rings, we performed a series of finite element simulations to investigate which model configuration leads to the rings formation that best matches the field observations. Results show that the formation of volcanic vortex rings requires a combination of fast gas release from gas bubbles (slugs) at the top of the magma conduit and regularity in the shape of the emitting vent. Our findings offer important insights into the geometry of the uppermost portion of vortex-forming volcanic conduits. Volcanic vortex ring studies may form the basis for a cross-disciplinary assessment of the upper conduit dynamics of volcanic vents.

2.
Science ; 358(6360)2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29026015

RESUMO

Spaceborne measurements by NASA's Orbiting Carbon Observatory-2 (OCO-2) at the kilometer scale reveal distinct structures of atmospheric carbon dioxide (CO2) caused by known anthropogenic and natural point sources. OCO-2 transects across the Los Angeles megacity (USA) show that anthropogenic CO2 enhancements peak over the urban core and decrease through suburban areas to rural background values more than ~100 kilometers away, varying seasonally from ~4.4 to 6.1 parts per million. A transect passing directly downwind of the persistent isolated natural CO2 plume from Yasur volcano (Vanuatu) shows a narrow filament of enhanced CO2 values (~3.4 parts per million), consistent with a CO2 point source emitting 41.6 kilotons per day. These examples highlight the potential of the OCO-2 sensor, with its unprecedented resolution and sensitivity, to detect localized natural and anthropogenic CO2 sources.

3.
Environ Pollut ; 158(3): 862-72, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19833422

RESUMO

Increases in reactive nitrogen deposition are a growing concern in the U.S. Rocky Mountain west. The Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study was designed to improve understanding of the species and pathways that contribute to nitrogen deposition in Rocky Mountain National Park (RMNP). During two 5-week field campaigns in spring and summer of 2006, the largest contributor to reactive nitrogen deposition in RMNP was found to be wet deposition of ammonium (34% spring and summer), followed by wet deposition of nitrate (24% spring, 28% summer). The third and fourth most important reactive nitrogen deposition pathways were found to be wet deposition of organic nitrogen (17%, 12%) and dry deposition of ammonia (14%, 16%), neither of which is routinely measured by air quality/deposition networks operating in the region. Total reactive nitrogen deposition during the spring campaign was determined to be 0.45 kg ha(-1) and more than doubled to 0.95 kg ha(-1) during the summer campaign.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Nitrogênio/análise , Enxofre/análise , Colorado , Estações do Ano
4.
J Chromatogr A ; 1216(9): 1503-10, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19162269

RESUMO

A sensitive and selective separation of common anionic constituents of atmospheric aerosols, sulfate, nitrate, chloride, and oxalate, is presented using microchip electrophoresis. The optimized separation is achieved in under 1 min and at low background electrolyte ionic strength (2.9 mM) by combining a metal-binding electrolyte anion (17 mM picolinic acid), a sulfate-binding electrolyte cation (19 mM HEPBS), a zwitterionic surfactant with affinity towards weakly solvated anions (19 mM N-tetradecyl,N,N-dimethyl-3-ammonio-1-propansulfonate), and operation in counter-electroosmotic flow (EOF) mode. The separation is performed at pH 4.7, permitting pH manipulation of oxalate's mobility. The majority of low-concentration organic acids are not observed at these conditions, allowing for rapid subsequent injections without the presence of interfering peaks. Because the mobilities of sulfate, nitrate, and oxalate are independently controlled, other minor constituents of aerosols can be analyzed, including nitrite, fluoride, and formate if desired using similar separation conditions. Contact conductivity detection is utilized, and the limit of detection for oxalate (S/N=3) is 180 nM without stacking. Sensitivity can be increased with field-amplified sample stacking by injecting from dilute electrolyte with a detection limit of 19 nM achieved. The high-sensitivity, counter-EOF operation, and short analysis time make this separation well-suited to continuous online monitoring of aerosol composition.


Assuntos
Aerossóis/química , Atmosfera/química , Eletroforese em Microchip/métodos , Íons/análise , Soluções Tampão , Cloretos/análise , Simulação por Computador , Dimetilpolisiloxanos/química , Condutividade Elétrica , Eletro-Osmose , Concentração de Íons de Hidrogênio , Nitratos/análise , Oxalatos/análise , Sensibilidade e Especificidade , Sulfatos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA