Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38475207

RESUMO

The finite number of pixels in a silicon photomultiplier (SiPM) limits its dynamic range to light pulses up to typically 80% of the total number of pixels in a device. Correcting the non-linear response is essential to extend the SiPM's dynamic range. One challenge in determining the non-linear response correction is providing a reference linear light source. Instead, the single-step method used to calibrate PMTs is applied, based on the difference in responses to two light sources. With this method, the response of an HPK SiPM (S14160-1315PS) is corrected to linearity within 5% while extending the linear dynamic range by a factor larger than ten. The study shows that the response function does not vary by more than 5% for a variation in the operating voltage between 2 and 5 V overvoltage in the gate length between 20 and 100 ns and for a time delay between the primary and secondary light of up to 40 ns.

2.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732806

RESUMO

The main consequence of radiation damage on a silicon photomultiplier (SiPM) is a significant increase in the dark current. If the SiPM is not adequately cooled, the power dissipation causes it to heat up, which alters its performance parameters. To investigate this heating effect, a measurement cycle was developed and performed with a KETEK SiPM glued to an Al2O3 substrate and with HPK SiPMs glued to either an Al2O3 substrate or a flexible PCB. The assemblies were connected either directly to a temperature-controlled chuck on a probe station, or through layers of materials with defined thermal resistance. An LED operated in DC mode was used to illuminate the SiPM and to tune the power dissipated in a measurement cycle. The SiPM current was used to determine the steady-state temperature reached by the SiPM via a calibration curve. The increase in SiPM temperature due to self-heating is analyzed as a function of the power dissipation in the SiPM and the thermal resistance. This information can be used to adjust the operating voltage of the SiPMs, taking into account the effects of self-heating. Similarly, this approach can be applied to investigate the unknown thermal contact of packaged SiPMs.

3.
J Synchrotron Radiat ; 26(Pt 1): 74-82, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30655470

RESUMO

The Adaptive Gain Integrating Pixel Detector (AGIPD) is an X-ray imager, custom designed for the European X-ray Free-Electron Laser (XFEL). It is a fast, low-noise integrating detector, with an adaptive gain amplifier per pixel. This has an equivalent noise of less than 1 keV when detecting single photons and, when switched into another gain state, a dynamic range of more than 104 photons of 12 keV. In burst mode the system is able to store 352 images while running at up to 6.5 MHz, which is compatible with the 4.5 MHz frame rate at the European XFEL. The AGIPD system was installed and commissioned in August 2017, and successfully used for the first experiments at the Single Particles, Clusters and Biomolecules (SPB) experimental station at the European XFEL since September 2017. This paper describes the principal components and performance parameters of the system.

4.
J Synchrotron Radiat ; 19(Pt 3): 340-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22514167

RESUMO

Imaging experiments at the European X-ray Free Electron Laser (XFEL) require silicon pixel sensors with extraordinary performance specifications: doses of up to 1 GGy of 12 keV photons, up to 10(5) 12 keV photons per 200 µm × 200 µm pixel arriving within less than 100 fs, and a time interval between XFEL pulses of 220 ns. To address these challenges, in particular the question of radiation damage, the properties of the SiO(2) layer and of the Si-SiO(2) interface, using MOS (metal-oxide-semiconductor) capacitors manufactured on high-resistivity n-type silicon irradiated to X-ray doses between 10 kGy and 1 GGy, have been studied. Measurements of capacitance/conductance-voltage (C/G-V) at different frequencies, as well as of thermal dielectric relaxation current (TDRC), have been performed. The data can be described by a dose-dependent oxide charge density and three dominant radiation-induced interface states with Gaussian-like energy distributions in the silicon band gap. It is found that the densities of the fixed oxide charges and of the three interface states increase up to dose values of approximately 10 MGy and then saturate or even decrease. The shapes and the frequency dependences of the C/G-V measurements can be quantitatively described by a simple model using the parameters extracted from the TDRC measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA