RESUMO
Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.
Assuntos
COVID-19 , Memória Epigenética , Síndrome de COVID-19 Pós-Aguda , Animais , Humanos , Camundongos , Diferenciação Celular , COVID-19/imunologia , Modelos Animais de Doenças , Células-Tronco Hematopoéticas , Inflamação/genética , Imunidade Treinada , Monócitos/imunologia , Síndrome de COVID-19 Pós-Aguda/genética , Síndrome de COVID-19 Pós-Aguda/imunologia , Síndrome de COVID-19 Pós-Aguda/patologiaRESUMO
Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.
Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Vírus de RNA/imunologia , Animais , COVID-19 , Células Cultivadas , Quimiocinas/genética , Quimiocinas/imunologia , Infecções por Coronavirus/genética , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Inflamação/virologia , Interferons/genética , Interferons/imunologia , Pandemias , Pneumonia Viral/genética , Vírus de RNA/classificação , SARS-CoV-2 , Transcrição GênicaRESUMO
Cancer alters the function of multiple organs beyond those targeted by metastasis1,2. Here we show that inflammation, fatty liver and dysregulated metabolism are hallmarks of systemically affected livers in mouse models and in patients with extrahepatic metastasis. We identified tumour-derived extracellular vesicles and particles (EVPs) as crucial mediators of cancer-induced hepatic reprogramming, which could be reversed by reducing tumour EVP secretion via depletion of Rab27a. All EVP subpopulations, exosomes and principally exomeres, could dysregulate hepatic function. The fatty acid cargo of tumour EVPs-particularly palmitic acid-induced secretion of tumour necrosis factor (TNF) by Kupffer cells, generating a pro-inflammatory microenvironment, suppressing fatty acid metabolism and oxidative phosphorylation, and promoting fatty liver formation. Notably, Kupffer cell ablation or TNF blockade markedly decreased tumour-induced fatty liver generation. Tumour implantation or pre-treatment with tumour EVPs diminished cytochrome P450 gene expression and attenuated drug metabolism in a TNF-dependent manner. We also observed fatty liver and decreased cytochrome P450 expression at diagnosis in tumour-free livers of patients with pancreatic cancer who later developed extrahepatic metastasis, highlighting the clinical relevance of our findings. Notably, tumour EVP education enhanced side effects of chemotherapy, including bone marrow suppression and cardiotoxicity, suggesting that metabolic reprogramming of the liver by tumour-derived EVPs may limit chemotherapy tolerance in patients with cancer. Our results reveal how tumour-derived EVPs dysregulate hepatic function and their targetable potential, alongside TNF inhibition, for preventing fatty liver formation and enhancing the efficacy of chemotherapy.
Assuntos
Vesículas Extracelulares , Ácidos Graxos , Fígado Gorduroso , Fígado , Neoplasias Pancreáticas , Animais , Camundongos , Sistema Enzimático do Citocromo P-450/genética , Vesículas Extracelulares/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Fígado/metabolismo , Fígado/patologia , Fígado/fisiopatologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias Hepáticas/secundário , Humanos , Inflamação/metabolismo , Ácido Palmítico/metabolismo , Células de Kupffer , Fosforilação Oxidativa , Proteínas rab27 de Ligação ao GTP/deficiênciaRESUMO
Recent studies have provided insights into the pathology of and immune response to COVID-191-8. However, a thorough investigation of the interplay between infected cells and the immune system at sites of infection has been lacking. Here we use high-parameter imaging mass cytometry9 that targets the expression of 36 proteins to investigate the cellular composition and spatial architecture of acute lung injury in humans (including injuries derived from SARS-CoV-2 infection) at single-cell resolution. These spatially resolved single-cell data unravel the disordered structure of the infected and injured lung, alongside the distribution of extensive immune infiltration. Neutrophil and macrophage infiltration are hallmarks of bacterial pneumonia and COVID-19, respectively. We provide evidence that SARS-CoV-2 infects predominantly alveolar epithelial cells and induces a localized hyperinflammatory cell state that is associated with lung damage. We leverage the temporal range of fatal outcomes of COVID-19 in relation to the onset of symptoms, which reveals increased macrophage extravasation and increased numbers of mesenchymal cells and fibroblasts concomitant with increased proximity between these cell types as the disease progresses-possibly as a result of attempts to repair the damaged lung tissue. Our data enable us to develop a biologically interpretable landscape of lung pathology from a structural, immunological and clinical standpoint. We use this landscape to characterize the pathophysiology of the human lung from its macroscopic presentation to the single-cell level, which provides an important basis for understanding COVID-19 and lung pathology in general.
Assuntos
COVID-19/patologia , COVID-19/virologia , Progressão da Doença , Pulmão/patologia , Pulmão/virologia , SARS-CoV-2/patogenicidade , Análise de Célula Única , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , COVID-19/mortalidade , COVID-19/fisiopatologia , Humanos , Inflamação/patologia , Inflamação/fisiopatologia , Inflamação/virologia , Pulmão/fisiopatologia , Macrófagos/imunologia , Neutrófilos/imunologia , Fatores de Tempo , Tropismo ViralRESUMO
There is an urgent need to create novel models using human disease-relevant cells to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biology and to facilitate drug screening. Here, as SARS-CoV-2 primarily infects the respiratory tract, we developed a lung organoid model using human pluripotent stem cells (hPSC-LOs). The hPSC-LOs (particularly alveolar type-II-like cells) are permissive to SARS-CoV-2 infection, and showed robust induction of chemokines following SARS-CoV-2 infection, similar to what is seen in patients with COVID-19. Nearly 25% of these patients also have gastrointestinal manifestations, which are associated with worse COVID-19 outcomes1. We therefore also generated complementary hPSC-derived colonic organoids (hPSC-COs) to explore the response of colonic cells to SARS-CoV-2 infection. We found that multiple colonic cell types, especially enterocytes, express ACE2 and are permissive to SARS-CoV-2 infection. Using hPSC-LOs, we performed a high-throughput screen of drugs approved by the FDA (US Food and Drug Administration) and identified entry inhibitors of SARS-CoV-2, including imatinib, mycophenolic acid and quinacrine dihydrochloride. Treatment at physiologically relevant levels of these drugs significantly inhibited SARS-CoV-2 infection of both hPSC-LOs and hPSC-COs. Together, these data demonstrate that hPSC-LOs and hPSC-COs infected by SARS-CoV-2 can serve as disease models to study SARS-CoV-2 infection and provide a valuable resource for drug screening to identify candidate COVID-19 therapeutics.
Assuntos
Antivirais/farmacologia , COVID-19/virologia , Colo/citologia , Avaliação Pré-Clínica de Medicamentos/métodos , Pulmão/citologia , Organoides/efeitos dos fármacos , Organoides/virologia , SARS-CoV-2/efeitos dos fármacos , Animais , COVID-19/prevenção & controle , Colo/efeitos dos fármacos , Colo/virologia , Aprovação de Drogas , Feminino , Xenoenxertos/efeitos dos fármacos , Humanos , Técnicas In Vitro , Pulmão/efeitos dos fármacos , Pulmão/virologia , Masculino , Camundongos , Organoides/citologia , Organoides/metabolismo , SARS-CoV-2/genética , Estados Unidos , United States Food and Drug Administration , Tropismo Viral , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19RESUMO
Respiratory failure is the leading cause of death in patients with severe SARS-CoV-2 infection1,2, but the host response at the lung tissue level is poorly understood. Here we performed single-nucleus RNA sequencing of about 116,000 nuclei from the lungs of nineteen individuals who died of COVID-19 and underwent rapid autopsy and seven control individuals. Integrated analyses identified substantial alterations in cellular composition, transcriptional cell states, and cell-to-cell interactions, thereby providing insight into the biology of lethal COVID-19. The lungs from individuals with COVID-19 were highly inflamed, with dense infiltration of aberrantly activated monocyte-derived macrophages and alveolar macrophages, but had impaired T cell responses. Monocyte/macrophage-derived interleukin-1ß and epithelial cell-derived interleukin-6 were unique features of SARS-CoV-2 infection compared to other viral and bacterial causes of pneumonia. Alveolar type 2 cells adopted an inflammation-associated transient progenitor cell state and failed to undergo full transition into alveolar type 1 cells, resulting in impaired lung regeneration. Furthermore, we identified expansion of recently described CTHRC1+ pathological fibroblasts3 contributing to rapidly ensuing pulmonary fibrosis in COVID-19. Inference of protein activity and ligand-receptor interactions identified putative drug targets to disrupt deleterious circuits. This atlas enables the dissection of lethal COVID-19, may inform our understanding of long-term complications of COVID-19 survivors, and provides an important resource for therapeutic development.
Assuntos
COVID-19/patologia , COVID-19/virologia , Pulmão/patologia , SARS-CoV-2/patogenicidade , Análise de Célula Única , Idoso , Idoso de 80 Anos ou mais , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Atlas como Assunto , Autopsia , COVID-19/imunologia , Estudos de Casos e Controles , Feminino , Fibroblastos/patologia , Fibrose/patologia , Fibrose/virologia , Humanos , Inflamação/patologia , Inflamação/virologia , Macrófagos/patologia , Macrófagos/virologia , Macrófagos Alveolares/patologia , Macrófagos Alveolares/virologia , Masculino , Pessoa de Meia-Idade , Plasmócitos/imunologia , Linfócitos T/imunologiaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with the development of variable levels of antibodies with neutralizing activity, which can protect against infection in animal models1,2. Antibody levels decrease with time, but, to our knowledge, the nature and quality of the memory B cells that would be required to produce antibodies upon reinfection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection with SARS-CoV-2. We find that titres of IgM and IgG antibodies against the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 decrease significantly over this time period, with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by fivefold in pseudotype virus assays. By contrast, the number of RBD-specific memory B cells remains unchanged at 6.2 months after infection. Memory B cells display clonal turnover after 6.2 months, and the antibodies that they express have greater somatic hypermutation, resistance to RBD mutations and increased potency, indicative of continued evolution of the humoral response. Immunofluorescence and PCR analyses of intestinal biopsies obtained from asymptomatic individuals at 4 months after the onset of coronavirus disease 2019 (COVID-19) revealed the persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 individuals. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.
Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Imunidade Humoral/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/genética , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Biópsia , COVID-19/sangue , Estudos de Coortes , Imunofluorescência , Humanos , Imunidade Humoral/genética , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Memória Imunológica/imunologia , Intestinos/imunologia , Pessoa de Meia-Idade , Mutação , Hipermutação Somática de Imunoglobulina , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , Adulto JovemRESUMO
Liver regeneration occurs in response to diverse injuries and is capable of functionally reestablishing the lost parenchyma. This phenomenon has been known since antiquity, encapsulated in the Greek myth where Prometheus was to be punished by Zeus for sharing the gift of fire with humanity by having an eagle eat his liver daily, only to have the liver regrow back, thus ensuring eternal suffering and punishment. Today, this process is actively leveraged clinically during living donor liver transplantation whereby up to a two-thirds hepatectomy (resection or removal of part of the liver) on a donor is used for transplant to a recipient. The donor liver rapidly regenerates to recover the lost parenchymal mass to form a functional tissue. This astonishing regenerative process and unique capacity of the liver are examined in further detail in this review.
Assuntos
Transplante de Fígado , Animais , Humanos , Doadores Vivos , Fígado , Hepatectomia , Regeneração Hepática/fisiologia , Homeostase , MamíferosRESUMO
m6A has different stoichiometry at different positions in different mRNAs. However, the exact stoichiometry of m6A is difficult to measure. Here, we describe SCARPET (site-specific cleavage and radioactive-labeling followed by purification, exonuclease digestion, and thin-layer chromatography), a simple and streamlined biochemical assay for quantifying m6A at any specific site in any mRNA. SCARPET involves a site-specific cleavage of mRNA immediately 5' of an adenosine site in an mRNA. This site is radiolabeled with 32P, and after a series of steps to purify the RNA and to remove nonspecific signals, the nucleotide is resolved by TLC to visualize A and m6A at this site. Quantification of these spots reveals the m6A stoichiometry at the site of interest. SCARPET can be applied to poly(A)-enriched RNA, or preferably purified mRNA, which produces more accurate m6A stoichiometry measurements. We show that sample processing steps of SCARPET can be performed in a single day, and results in a specific and accurate measurement of m6A stoichiometry at specific sites in mRNA. Using SCARPET, we measure exact m6A stoichiometries in specific mRNAs and show that Zika genomic RNA lacks m6A at previously mapped sites. SCARPET will be useful for testing specific sites for their m6A stoichiometry and to assess how m6A stoichiometry changes in different conditions and cellular contexts.
Assuntos
Infecção por Zika virus , Zika virus , Humanos , Adenosina/genética , RNA , RNA Mensageiro/metabolismo , Nucleotídeos , Processamento Pós-Transcricional do RNA , Zika virus/genéticaRESUMO
Endothelial cells adopt tissue-specific characteristics to instruct organ development and regeneration1,2. This adaptability is lost in cultured adult endothelial cells, which do not vascularize tissues in an organotypic manner. Here, we show that transient reactivation of the embryonic-restricted ETS variant transcription factor 2 (ETV2)3 in mature human endothelial cells cultured in a serum-free three-dimensional matrix composed of a mixture of laminin, entactin and type-IV collagen (LEC matrix) 'resets' these endothelial cells to adaptable, vasculogenic cells, which form perfusable and plastic vascular plexi. Through chromatin remodelling, ETV2 induces tubulogenic pathways, including the activation of RAP1, which promotes the formation of durable lumens4,5. In three-dimensional matrices-which do not have the constraints of bioprinted scaffolds-the 'reset' vascular endothelial cells (R-VECs) self-assemble into stable, multilayered and branching vascular networks within scalable microfluidic chambers, which are capable of transporting human blood. In vivo, R-VECs implanted subcutaneously in mice self-organize into durable pericyte-coated vessels that functionally anastomose to the host circulation and exhibit long-lasting patterning, with no evidence of malformations or angiomas. R-VECs directly interact with cells within three-dimensional co-cultured organoids, removing the need for the restrictive synthetic semipermeable membranes that are required for organ-on-chip systems, therefore providing a physiological platform for vascularization, which we call 'Organ-On-VascularNet'. R-VECs enable perfusion of glucose-responsive insulin-secreting human pancreatic islets, vascularize decellularized rat intestines and arborize healthy or cancerous human colon organoids. Using single-cell RNA sequencing and epigenetic profiling, we demonstrate that R-VECs establish an adaptive vascular niche that differentially adjusts and conforms to organoids and tumoroids in a tissue-specific manner. Our Organ-On-VascularNet model will permit metabolic, immunological and physiochemical studies and screens to decipher the crosstalk between organotypic endothelial cells and parenchymal cells for identification of determinants of endothelial cell heterogeneity, and could lead to advances in therapeutic organ repair and tumour targeting.
Assuntos
Vasos Sanguíneos/citologia , Carcinogênese , Células Endoteliais/citologia , Hemodinâmica , Neoplasias/irrigação sanguínea , Organogênese , Organoides/irrigação sanguínea , Vasos Sanguíneos/crescimento & desenvolvimento , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Cromatina/metabolismo , Epigênese Genética , Epigenômica , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Ilhotas Pancreáticas/irrigação sanguínea , Modelos Biológicos , Especificidade de Órgãos , RNA-Seq , Análise de Célula Única , Fatores de Transcrição , TranscriptomaRESUMO
The synchronous functioning and quality control of organelles ensure cell survival and function and are essential for maintaining homeostasis. Prolonged exposure to stressors (viruses, bacteria, parasitic infections, alcohol, drugs) or genetic mutations often disrupt the functional integrity of organelles which plays a critical role in the initiation and progression of several diseases including chronic liver diseases. One of the most important pathologic consequences of chronic liver diseases is liver fibrosis, characterized by tissue scarring due to the progressive accumulation of extracellular matrix components. Left untreated, fibrosis may advance to life-threatening complications such as cirrhosis, hepatic decompensation, and HCC, which collectively accounts for â¼1 million deaths per year worldwide. Owing to the lack of treatment options that can regress or reverse cirrhosis, liver transplantation is currently the only available treatment for end-stage liver disease. However, the limited supply of usable donor organs, adverse effects of lifelong immunosuppressive regimes, and financial considerations pose major challenges and limit its application. Hence, effective therapeutic strategies are urgently needed. An improved understanding of the organelle-level regulation of fibrosis can help devise effective antifibrotic therapies focused on reducing organelle stress, limiting organelle damage, improving interorganelle crosstalk, and restoring organelle homeostasis; and could be a potential clinical option to avoid transplantation. This review provides a timely update on the recent findings and mechanisms covering organelle-specific dysfunctions in liver fibrosis, highlights how correction of organelle functions opens new treatment avenues and discusses the potential challenges to clinical application.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Cirrose Hepática/patologia , Fígado/patologia , Fibrose , OrganelasRESUMO
Neurofibromatosis type 1 (NF1) is the most common neurocutaneous syndrome in the United States, affecting every 1 in 3000 individuals. NF1 occurs due to non-functional mutations in the NF1 gene, which expresses neurofibromin, a protein involved in tumour suppression. As a result, NF1 typically presents with non-cancerous neoplasm masses called neurofibromas across the body. Out of all NF1 abnormalities, the most common skeletal abnormality seen in around 10%-30% of NF1 patients is scoliosis, an improver curvature of the spine. However, there is a lack of research on the effects of scoliosis on demographics and morbidities of NF1 patients. We performed a national analysis to investigate the complex relationship between NF1 and scoliosis on patients' demographics and comorbidities. We conducted a retrospective cross-sectional analysis of the 2017 US National Inpatient Sample database using univariable Chi-square analysis and multivariable binary logistic regression analysis to determine the interplay of NF1 and scoliosis on patients' demographics and comorbidities. Our query resulted in 4635 total NF1 patients, of which 475 (10.25%) had scoliosis and 4160 (89.75%) did not. Demographic analysis showed that NF1 patients with scoliosis were typically younger, female and white compared to NF1 patients without scoliosis. Comorbidity analysis showed that NF1 patients with scoliosis were more likely to develop malignant brain neoplasms, epilepsy, hydrocephalus, pigmentation disorders, hypothyroidism, diabetes with chronic complications and coagulopathy disorders. NF1 patients with scoliosis were less likely to develop congestive heart failure, pulmonary circulation disease, peripheral vascular disease, paralysis, chronic pulmonary disease, lymphoma and psychosis. NF1 patients with scoliosis were predominantly younger, female, white patients. The presence of scoliosis in NF1 patients increases the risks for certain brain neoplasms and disorders but serves a protective effect against some pulmonary and cardiac complications.
Assuntos
Neurofibromatose 1 , Escoliose , Humanos , Feminino , Estados Unidos/epidemiologia , Neurofibromatose 1/complicações , Neurofibromatose 1/epidemiologia , Neurofibromatose 1/genética , Escoliose/complicações , Escoliose/epidemiologia , Estudos Retrospectivos , Pacientes Internados , Estudos Transversais , Comorbidade , DemografiaRESUMO
BACKGROUND: Increasing evidence suggests that cardiac arrhythmias are frequent clinical features of coronavirus disease 2019 (COVID-19). Sinus node damage may lead to bradycardia. However, it is challenging to explore human sinoatrial node (SAN) pathophysiology due to difficulty in isolating and culturing human SAN cells. Embryonic stem cells (ESCs) can be a source to derive human SAN-like pacemaker cells for disease modeling. METHODS: We used both a hamster model and human ESC (hESC)-derived SAN-like pacemaker cells to explore the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the pacemaker cells of the heart. In the hamster model, quantitative real-time polymerase chain reaction and immunostaining were used to detect viral RNA and protein, respectively. We then created a dual knock-in SHOX2:GFP;MYH6:mCherry hESC reporter line to establish a highly efficient strategy to derive functional human SAN-like pacemaker cells, which was further characterized by single-cell RNA sequencing. Following exposure to SARS-CoV-2, quantitative real-time polymerase chain reaction, immunostaining, and RNA sequencing were used to confirm infection and determine the host response of hESC-SAN-like pacemaker cells. Finally, a high content chemical screen was performed to identify drugs that can inhibit SARS-CoV-2 infection, and block SARS-CoV-2-induced ferroptosis. RESULTS: Viral RNA and spike protein were detected in SAN cells in the hearts of infected hamsters. We established an efficient strategy to derive from hESCs functional human SAN-like pacemaker cells, which express pacemaker markers and display SAN-like action potentials. Furthermore, SARS-CoV-2 infection causes dysfunction of human SAN-like pacemaker cells and induces ferroptosis. Two drug candidates, deferoxamine and imatinib, were identified from the high content screen, able to block SARS-CoV-2 infection and infection-associated ferroptosis. CONCLUSIONS: Using a hamster model, we showed that primary pacemaker cells in the heart can be infected by SARS-CoV-2. Infection of hESC-derived functional SAN-like pacemaker cells demonstrates ferroptosis as a potential mechanism for causing cardiac arrhythmias in patients with COVID-19. Finally, we identified candidate drugs that can protect the SAN cells from SARS-CoV-2 infection.
Assuntos
COVID-19 , Ferroptose , Humanos , Miócitos Cardíacos/metabolismo , SARS-CoV-2 , Nó Sinoatrial/metabolismoRESUMO
Extramammary Paget disease (EMPD) is a rare skin cancer of apocrine-rich skin that mimics common inflammatory and infectious dermatoses, leading to delays in diagnosis and increased patient morbidity. Better clinical recognition of this entity, multidisciplinary patient assessment, and deeper understanding of the underlying pathophysiology are essential to improve patient care and disease outcomes. It is important to distinguish primary intraepithelial/micro-invasive EMPD from invasive EMPD or cases with adenocarcinoma arising within EMPD. This 2-part continuing medical education series provides a complete picture of EMPD. Part 1 of this continuing medical education series reviews the epidemiology, oncogenesis, clinical and histopathologic presentation, workup, and prognosis of this rare cancer.
Assuntos
Doença de Paget Extramamária , Neoplasias Cutâneas , Doença de Paget Extramamária/epidemiologia , Doença de Paget Extramamária/diagnóstico , Doença de Paget Extramamária/patologia , Humanos , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Prognóstico , Masculino , Feminino , Diagnóstico DiferencialRESUMO
INTRODUCTION: Tobacco use is a major threat to health globally. A number of countries have adopted "endgame goals" to minimize smoking prevalence. The INSPIRED project aims to describe and compare the experiences of the first six countries to adopt an endgame goal. AIMS AND METHODS: Data were collected on the initial experiences of endgame goals in Canada, Finland, Ireland, New Zealand (Aotearoa), Scotland, and Sweden up to 2018. Information was collated on the nature of the endgame goals, associated interventions and strategies, potential enablers and barriers, and perceived advantages and disadvantages. RESULTS: The INSPIRED countries had relatively low smoking prevalences and moderate-to-strong smoke-free policies. Their endgame goals aimed for smoking prevalences of 5% or less. Target dates ranged from 2025 to 2035. Except for New Zealand (Aotearoa), all countries had an action plan to support their goal by 2018. However, none of the plans incorporated specific endgame measures. Lack of progress in reducing inequities was a key concern, despite the consideration of equity in all of the country's goals and/or action plans. Experience with endgame goals was generally positive; however, participants thought additional interventions would be required to equitably meet their endgame goal. CONCLUSIONS: There was variation in the nature and approach to endgame goals. This suggests that countries should consider adopting endgame goals and strategies to suit their social, cultural, and political contexts. The experiences of the INSPIRED countries suggest that further and more significant interventions will be required for the timely and equitable achievement of endgame goals. IMPLICATIONS: By 2018, six countries (Canada, Finland, Ireland, New Zealand (Aotearoa), Scotland, and Sweden) had introduced government-endorsed "endgame goals," to rapidly reduce smoking prevalence to very low levels by a specified date. The nature and implementation of endgame goals were variable. Early experiences with the goals were generally positive, but progress in reducing smoking prevalence was insufficient, particularly for priority groups. This finding suggests more significant interventions ("endgame interventions") and measures to reduce inequities need to be implemented to achieve endgame goals. Variation in the nature and experience of endgame goals demonstrates the importance of designing endgame strategies that suit distinct social, cultural, and political contexts.
Assuntos
Objetivos , Humanos , Nova Zelândia/epidemiologia , Escócia/epidemiologia , Canadá/epidemiologia , Finlândia/epidemiologia , Suécia/epidemiologia , Irlanda/epidemiologia , Prevenção do Hábito de Fumar , Política Antifumo , Fumar/epidemiologia , Prevalência , Abandono do Hábito de FumarRESUMO
Research suggests that vaping raises oxidative stress levels and has been implicated in poor mental health. The objective of this study is to assess cross-sectional associations between quality of life (QOL) indicators and e-cigarette (EC) use in young Canadian adults. We used data from the 2016-2017 Canadian Health Measures Survey. We compared physical activity (daily steps), physiological measurements (high-density lipoprotein for cholesterol level), self-perceived life stress, mental health, and QOL between ever-use EC users and non-users. Multivariable binary or ordinal logistic regressions were used to calculate odds ratios (OR) with 95% confidence intervals (CI). Analyses included 905 participants (15-30 years) with 115 (12.7%) reporting EC use and 790 non-users. After adjusting for confounders, compared to non-users, EC users had significantly higher odds of being physically active (OR = 2.19, 95%CI: 1.14-4.20) but also with self-reported extreme life stress (OR = 2.68, 95%CI: 1.45-4.92). Albeit statistically non-significant, EC users also had higher odds of poorer QOL (OR = 1.12, 95%CI: 0.64-1.95). No statistically significant interactions between EC use, cigarette smoking, cannabis consumption and health outcomes were observed. CONCLUSION: Our study found that EC use was independently and significantly associated with increased odds of life stress and an indication of poorer QOL. Ongoing surveillance on young EC users is important to measure the long-term impact of vaping on their physical, mental health and quality of life to target for interventions. WHAT IS KNOWN: ⢠E-cigarette use has been associated with high-risk behaviours and adverse mental health outcomes, such as depression and anxiety. WHAT IS NEW: ⢠E-cigarette users had significantly higher odds of being physically active and higher amounts of life stress.
Assuntos
Inquéritos Epidemiológicos , Estilo de Vida , Qualidade de Vida , Vaping , Humanos , Canadá/epidemiologia , Masculino , Feminino , Adulto , Adulto Jovem , Adolescente , Estudos Transversais , Vaping/epidemiologia , Exercício Físico , Sistemas Eletrônicos de Liberação de Nicotina/estatística & dados numéricos , Estresse Psicológico/epidemiologia , Saúde Mental , Nível de SaúdeRESUMO
BACKGROUND: Youth engagement in research, wherein youth are involved in the research beyond mere participation as human subjects, is growing and becoming more popular as an approach to research. However, systematic and deliberate theory-building has been limited. We conducted a systematic review to identify and synthesize theories, models and frameworks that have been applied in the engagement of youth in health research, including mental health. METHODS: Six academic databases (MEDLINE, PsycINFO, Embase, PubMed, Scopus, CINAHL) and the grey literature were searched for relevant studies. Citation tracking was conducted through ancestry and descendancy searches. The final search was completed on 7 February 2023. Findings were summarized in a narrative synthesis informed by principles of hermeneutic analysis and interpretation. Reporting of results is in accordance with the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) 2020 Statement. RESULTS: Of the 1156 records identified, 16 papers were included, from which we extracted named theories (n = 6), implicit theories (n = 5) and models and frameworks (n = 20) used for youth engagement in health research. We identified theories that were explicitly stated and surfaced theories that were more implicitly suggested. Models and frameworks were organized into four categories based on their principal features: power-focused (n = 8), process-focused (n = 7), impact-focused (n = 3) and equity-focused (n = 2). Few frameworks (n = 5) were empirically tested in health-related research. CONCLUSIONS: The state of theoretical development in youth engagement in research is still evolving. In this systematic review, we identified theories, models and frameworks used for youth engagement in health research. Findings from this systematic review offer a range of resources to those who seek to develop and strengthen youth engagement in their own research. PATIENT OR PUBLIC CONTRIBUTION: Youth engaged as patients in the research were not involved in planning or conducting the systematic review. However, youth researchers in their early to mid-20s led the planning, implementation and interpretation of the review. As part of subsequent work, we formed a youth advisory board to develop a youth-led knowledge mobilization intended for an audience of youth with lived experience of being engaged as patients in research.