Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Brain Behav Immun ; 116: 218-228, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38070621

RESUMO

Asthma is a highly heterogeneous inflammatory disease that can have a significant effect on both the respiratory system and central nervous system. Population based studies and animal models have found asthma to be comorbid with a number of neurological conditions, including depression, anxiety, and neurodevelopmental disorders. In addition, maternal asthma during pregnancy has been associated with neurodevelopmental disorders in the offspring, such as autism spectrum disorders and attention deficit hyperactivity disorder. In this article, we review the most current epidemiological studies of asthma that identify links to neurological conditions, both as it relates to individuals that suffer from asthma and the impacts asthma during pregnancy may have on offspring neurodevelopment. We also discuss the relevant animal models investigating these links, address the gaps in knowledge, and explore the potential future directions in this field.


Assuntos
Asma , Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Animais , Humanos , Doenças Neuroinflamatórias , Transtorno do Espectro Autista/epidemiologia , Comorbidade , Asma/epidemiologia , Transtornos do Neurodesenvolvimento/epidemiologia , Modelos Animais de Doenças
2.
J Neuroinflammation ; 20(1): 252, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919762

RESUMO

Inflammation during pregnancy is associated with an increased risk for neurodevelopmental disorders (NDD). Increased gestational inflammation can be a result of an immune condition/disease, exposure to infection, and/or environmental factors. Epidemiology studies suggest that cases of NDD are on the rise. Similarly, rates of asthma are increasing, and the presence of maternal asthma during pregnancy increases the likelihood of a child being later diagnosed with NDD such as autism spectrum disorders (ASD). Particulate matter (PM), via air pollution, is an environmental factor known to worsen the symptoms of asthma, but also, PM has been associated with increased risk of neuropsychiatric disorders. Despite the links between asthma and PM with neuropsychiatric disorders, there is a lack of laboratory models investigating combined prenatal exposure to asthma and PM on offspring neurodevelopment. Thus, we developed a novel mouse model that combines exposure to maternal allergic asthma (MAA) and ultrafine iron-soot (UIS), a common component of PM. In the current study, female BALB/c mice were sensitized for allergic asthma with ovalbumin (OVA) prior to pregnancy. Following mating and beginning on gestational day 2 (GD2), dams were exposed to either aerosolized OVA to induce allergic asthma or phosphate buffered saline (PBS) for 1 h. Following the 1-h exposure, pregnant females were then exposed to UIS with a size distribution of 55 to 169 nm at an average concentration of 176 ± 45 µg/m3) (SD), or clean air for 4 h, over 8 exposure sessions. Offspring brains were collected at postnatal days (P)15 and (P)35. Cortices and hippocampal regions were then isolated and assessed for changes in cytokines using a Luminex bead-based multiplex assay. Analyses identified changes in many cytokines across treatment groups at both timepoints in the cortex, including interleukin-1 beta (IL-1ß), and IL-17, which remained elevated from P15 to P35 in all treatment conditions compared to controls. There was a suppressive effect of the combined MAA plus UIS on the anti-inflammatory cytokine IL-10. Potentially shifting the cytokine balance towards more neuroinflammation. In the hippocampus at P15, elevations in cytokines were also identified across the treatment groups, namely IL-7. The combination of MAA and UIS exposure (MAA-UIS) during pregnancy resulted in an increase in microglia density in the hippocampus of offspring, as identified by IBA-1 staining. Together, these data indicate that exposure to MAA, UIS, and MAA-UIS result in changes in the neuroimmune environment of offspring that persist into adulthood.


Assuntos
Asma , Efeitos Tardios da Exposição Pré-Natal , Humanos , Animais , Gravidez , Camundongos , Criança , Feminino , Material Particulado/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Asma/induzido quimicamente , Citocinas , Inflamação
3.
Brain Behav Immun ; 93: 66-79, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33358979

RESUMO

BACKGROUND: Stress during pregnancy and maternal inflammation are two common prenatal factors that impact offspring development. Asthma is the leading chronic condition complicating pregnancy and a common source of prenatal stress and inflammation. OBJECTIVE: The goal of this study was to characterize the developmental impact of repeated allergic asthma inflammation during pregnancy on offspring behavioral outcomes and brain inflammation. METHODS: Pregnant female C57BL/6 mice were sensitized with ovalbumin (OVA) or PBS vehicle control and then randomly assigned to receive daily aerosol exposures to the same OVA or PBS treatment during early, gestational days (GD) 2-GD9, or late pregnancy, GD10-GD17. Maternal sera were collected after the first and last aerosol induction regimen and measured for concentrations of corticosterone, anti-OVA IgE, and cytokine profiles. Juvenile male and female offspring were assessed for locomotor and social behaviors and later as adults assessed for anxiety-like, and marble burying behaviors using a series of behavioral tasks. Offspring brains were evaluated for region-specific differences in cytokine concentrations. RESULTS: In early gestation, both PBS and OVA-exposed dams had similar serum corticosterone concentration at the start (GD2) and end (GD9) of daily aerosol inductions. Only OVA-exposed dams showed elevations in cytokines that imply a diverse and robust T helper cell-mediated immune response. Male offspring of early OVA-exposed dams showed decreases in open-arm exploration in the elevated plus maze and increased marble burying without concomitant changes in locomotor activity or social interactions. These behavioral deficits in early OVA-exposed male offspring were associated with lower concentrations of G-CSF, IL-4, IL-7, IFNγ, and TNFα in the hypothalamus. In late gestation, both PBS and OVA-exposed dams had increased corticosterone levels at the end of daily aerosol inductions (GD17) compared to at the start of inductions (GD10). Male offspring from both PBS and OVA-exposed dams in late gestation showed similar decreases in open arm exploration on the elevated plus maze compared to OVA male offspring exposed in early gestation. No behavioral differences were present in female offspring across all treatment groups. However, females of dams exposed to OVA during early gestation displayed similar reductions as males in hypothalamic G-CSF, IL-7, IL-4, and IFNγ. DISCUSSION: The inflammatory responses from maternal allergic asthma in early gestation and resulting increases in anxiety-like behavior in males support a link between the timing of prenatal insults and sex-specific developmental outcomes. Moreover, the heightened stress responses in late gestation and concomitant dampened inflammatory response to allergic asthma suggest that interactions between the maternal immune and stress-response systems shape early life fetal programming.


Assuntos
Asma , Efeitos Tardios da Exposição Pré-Natal , Adulto , Animais , Asma/induzido quimicamente , Encéfalo , Feminino , Humanos , Masculino , Exposição Materna , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
4.
Brain Behav Immun ; 59: 55-61, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27235929

RESUMO

Associative studies across a range of neurodevelopmental disorders have revealed a relationship between immune system function and behavioral deficits. These correlations are particularly evident in individuals with autism spectrum disorders (ASD), a developmental disorder characterized by social behavior deficits and noted for its high instances of immune system dysfunction. Mouse models provide a unique opportunity to explore causal links between immune and nervous system function and reveal how changes in these systems alter behavioral profiles. The BTBR T+ Itpr3tf/J (BTBR) mouse strain is characterized by both social behavior impairments and aberrant immune responses, affording the unique opportunity to investigate the causal relationship between behavior and immunity through direct manipulation of these systems. Using bone marrow from the highly social C57BL/6J (C57) mouse strain, BTBR mice were tested for changes in social approach behavior and repetitive grooming following irradiation and bone marrow transplant. BTBR recipient mice treated with allogeneic bone marrow from C57 donor mice, but not syngeneic BTBR bone marrow, displayed increased sociability as measured by the three-chamber social approach task and total time spent social sniffing. In addition, C57 recipient mice given allogeneic bone marrow from BTBR donors showed a significant increase in repetitive grooming behavior. These data provide evidence for a causal relationship between peripheral immune phenotype and social behavior in the BTBR mouse strain and further strengthen and expand on our existing understanding of the role of immune function in behavior.


Assuntos
Transplante de Medula Óssea/psicologia , Comportamento Social , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/psicologia , Comportamento Animal , Modelos Animais de Doenças , Feminino , Asseio Animal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Atividade Motora/fisiologia , Ratos Endogâmicos
5.
Brain Behav Immun ; 63: 99-107, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27622677

RESUMO

Recent population-based studies of expecting mothers identified a unique profile of immune markers that are associated with an increased risk of having a child diagnosed with autism spectrum disorder (ASD). This immune profile, including increased levels of maternal and placental interleukin (IL)-4 and IL-5, is consistent with an immune response found in an allergic-asthma phenotype. Allergies and asthma reflect an imbalance in immune responses including polarization towards T-helper type 2 (TH2) responses, with both genetic susceptibility and environmental factors affecting this T-cell polarization. Mouse strains provide a known and controlled source of genetic diversity to explore the role of genetic predisposition on environmental factors. In particular, the FVB background exhibits a skew towards TH2-mediated allergic-asthma response in traditional models of asthma whereas the C57 strain exhibits a more blunted TH2 polarized phenotype resulting in an attenuated allergic-asthma response. C57BL/6J (C57) and the sighted FVB.129P2-Pde6b(+) Tyr(c-ch)/Ant (FVB/Ant) lines were selected based on their characteristic high sociability and differing sensitivity to TH2-mediated stimuli. Based on the distinct allergy-sensitive immune responses of these two strains, we hypothesized that unique developmental consequences would occur in offspring following maternal allergy-asthma exposure. Female C57 and FVB/Ant dams were primed/sensitized with an exposure to ovalbumin (OVA) before pregnancy, then exposed to either aerosolized OVA or PBS-vehicle throughout gestation. Sera from pregnant dams were analyzed for changes in cytokine profiles using multiplex-arrays and offspring were assessed for changes in autism-like behavioral responses. Analysis of maternal sera revealed elevated IL-4 and IL-5 in OVA-treated dams of both strains but only C57 mice expressed increased levels of IL-1ß, IL-6, TNFα, and IL-17. Behavioral assessments revealed strain-dependent changes in juvenile reciprocal social interaction in offspring of maternal allergic asthma dams. Moreover, mice of both strains showed decreased repetitive grooming and increased marble burying behavior when born to OVA-exposed dams. Together, these findings support the important role genetic predisposition plays in the effects of maternal immune activation and underscore differences in ASD-like behavioral outcomes across mouse strains.


Assuntos
Asma/genética , Asma/imunologia , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/imunologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Interação Gene-Ambiente , Masculino , Exposição Materna/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia , Células Th2/imunologia
6.
Brain Behav Immun ; 38: 220-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24566386

RESUMO

Several epidemiological studies have shown an association between infection or inflammation during pregnancy and increased risk of autism in the child. In addition, animal models have illustrated that maternal inflammation during gestation can cause autism-relevant behaviors in the offspring; so called maternal immune activation (MIA) models. More recently, permanent changes in T cell cytokine responses were reported in children with autism and in offspring of MIA mice; however, the cytokine responses of other immune cell populations have not been thoroughly investigated in these MIA models. Similar to changes in T cell function, we hypothesized that following MIA, offspring will have long-term changes in macrophage function. To test this theory, we utilized the poly (I:C) MIA mouse model in C57BL/6J mice and examined macrophage cytokine production in adult offspring. Pregnant dams were given either a single injection of 20mg/kg polyinosinic-polycytidylic acid, poly (I:C), or saline delivered intraperitoneally on gestational day 12.5. When offspring of poly (I:C) treated dams reached 10weeks of age, femurs were collected and bone marrow-derived macrophages were generated. Cytokine production was measured in bone marrow-derived macrophages incubated for 24h in either growth media alone, LPS, IL-4/LPS, or IFN-γ/LPS. Following stimulation with LPS alone, or the combination of IFN-γ/LPS, macrophages from offspring of poly (I:C) treated dams produced higher levels of IL-12(p40) (p<0.04) suggesting an increased M1 polarization. In addition, even without the presence of a polarizing cytokine or LPS stimulus, macrophages from offspring of poly (I:C) treated dams exhibited a higher production of CCL3 (p=0.05). Moreover, CCL3 levels were further increased when stimulated with LPS, or polarized with either IL-4/LPS or IFN-γ/LPS (p<0.05) suggesting a general increase in production of this chemokine. Collectively, these data suggest that MIA can produce lasting changes in macrophage function that are sustained into adulthood.


Assuntos
Macrófagos/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Citocinas/metabolismo , Feminino , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
7.
J Neuroimmunol ; 390: 578341, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613873

RESUMO

Maternal allergic asthma (MAA) during pregnancy has been associated with increased risk of neurodevelopmental disorders in humans, and rodent studies have demonstrated that inducing a T helper-2-mediated allergic response during pregnancy leads to an offspring behavioral phenotype characterized by decreased social interaction and increased stereotypies. The interleukin (IL)-4 cytokine is hypothesized to mediate the neurobehavioral impact of MAA on offspring. Utilizing IL-4 knockout mice, this study assessed whether MAA without IL-4 signaling would still impart behavioral deficits. C57 and IL-4 knockout female mice were sensitized to ovalbumin, exposed to repeated MAA inductions, and their offspring performed social, cognitive, and motor tasks. Only C57 offspring of MAA dams displayed social and cognitive deficits, while IL-4 knockout mice showed altered motor activity compared with C57 mice. These findings highlight a key role for IL-4 signaling in MAA-induced behavioral deficits and more broadly in normal brain development.


Assuntos
Asma , Interleucina-4 , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Masculino , Camundongos , Gravidez , Asma/imunologia , Asma/genética , Comportamento Animal/fisiologia , Interleucina-4/genética , Interleucina-4/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia , Ovalbumina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/imunologia , Comportamento Social
8.
Brain Behav Immun Health ; 35: 100700, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38107021

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a complex behavioral disorder characterized by hyperactivity, impulsivity, inattention, and deficits in working memory and time perception. While animal models have advanced our neurobiological understanding of this condition, there are limited and inconsistent data on working and elapsed time memory function. Inflammatory signaling has been identified as a key factor in memory and cognitive impairments, but its role in ADHD remains unclear. Additionally, the disproportionate investigation of male subjects in ADHD research has contributed to a poor understanding of the disorder in females. This study sought to investigate the potential connections between memory, neuroimmunology, and ADHD in both male and female animals. Specifically, we utilized the spontaneously hypertensive rat (SHR), one of the most extensively studied animal models of ADHD. Compared to their control, the Wistar-Kyoto (WKY) rat, male SHR are reported to exhibit several behavioral phenotypes associated with ADHD, including hyperactivity, impulsivity, and poor sustained attention, along with impairments in learning and memory. As the hippocampus is a key brain region for learning and memory, we examined the behavior of male and female SHR and WKY rats in two hippocampal-dependent memory tasks. Our findings revealed that SHR have delay-dependent working memory deficits that were similar to, albeit less severe than, those seen in hippocampal-lesioned rats. We also observed impairments in elapsed time processing in female SHR, particularly in the discrimination of longer time durations. To investigate the impact of inflammatory signaling on memory in these rats, we analyzed the levels of several cytokines in the dorsal and ventral hippocampus of SHR and WKY. Although we found some sex and genotype differences, concentrations were generally similar between groups. Taken together, our results indicate that SHR exhibit deficits in spatial working memory and memory for elapsed time, as well as some differences in hippocampal cytokine concentrations. These findings contribute to a better understanding of the neurobiological basis of ADHD in both sexes and may inform future research aimed at developing effective treatments for the disorder. Nonetheless, the potential mediating role of neuroinflammation in the memory symptomatology of SHR requires further investigation.

9.
Aggress Behav ; 39(4): 290-300, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23519643

RESUMO

Winning an aggressive encounter enhances the probability of winning future contests. This phenomenon, known as the winner effect, has been well studied across vertebrate species. While numerous animal models have been developed to study the winner effect in the laboratory setting, large variation in experimental design, choice of species, and housing conditions have resulted in conflicting reports on the behavioral outcomes. The Syrian hamster (Mesocricetus auratus) presents as a novel species with face validity to study the effects of repeated fighting on subsequent agonistic encounters. After a 14-day training period, "trained fighter" hamsters displayed elevated fighting behaviors characterized by more intense and severe displays of aggression along with increased displays of dominant postures compared to naïve residents with no prior social experience. To determine whether these phenotypic changes in fighting behavior reflect alterations in neurochemistry, brains of aggressive and naïve hamsters were examined for changes in dopaminergic innervation in key regions known to control social and motivational behavior. Interestingly, changes in tyrosine hydroxylase, the rate limiting enzyme for dopamine production, were observed in brain regions within the social decision-making network. These increases in aggression observed after repeated winning may reflect a learned behavior resulting from increases in neurotransmitter activity which serve to reinforce the behavior. The data implicate the presence of a winner effect in hamsters and provide evidence for a neural mechanism underlying the changes in aggressive behavior after repeated agonistic encounters.


Assuntos
Agressão/fisiologia , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Comportamento Competitivo/fisiologia , Modelos Animais de Doenças , Dominação-Subordinação , Dopamina/metabolismo , Animais , Condicionamento Psicológico , Cricetinae , Predomínio Social
10.
Res Sq ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503062

RESUMO

Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by the presence of decreased social interactions and an increase in stereotyped and repetitive behaviors. Epidemiology studies suggest that cases of ASD are on the rise. Similarly, rates of asthma are increasing, and the presence of maternal asthma during pregnancy increases the likelihood of a child being later diagnosed with ASD. Particulate matter (PM), via air pollution, is an environmental factor known to worsen the symptoms of asthma, but also, PM has been associated with increased risk of neuropsychiatric disorders including ASD. Despite the links between asthma and PM with neuropsychiatric disorders, there is a lack of laboratory models investigating combined prenatal exposure to asthma and PM on offspring neurodevelopment. Thus, we developed a novel mouse model that combines exposure to maternal allergic asthma (MAA) and ultrafine iron-soot (UIS), a common component of PM. In the current study, female BALB/c mice were primed for allergic asthma with ovalbumin (OVA) prior to pregnancy. Following mating and beginning on gestational day 2 (GD2), dams were exposed to either aerosolized OVA or phosphate buffered saline (PBS) for 1 hour. Following the 1-hour exposure, pregnant females were then exposed to UIS or clean air for 4 hours. Offspring brains were collected at postnatal days (P)15 and (P)35. Cortices and hippocampal regions were then isolated and assessed for changes in cytokines using a Luminex bead-based multiplex assay. Analyses identified changes in many cytokines across treatment groups at both timepoints in the cortex, including interleukin-1 beta (IL-1ß), IL-2, IL-13, and IL-17, which remained elevated from P15 to P35 in all treatment conditions compared to controls. In the hippocampus at P15, elevations in cytokines were also identified across the treatment groups, namely interferon gamma (IFNγ) and IL-7. The combination of MAA and UIS exposure (MAA-UIS) during pregnancy resulted in an increase in microglia density in the hippocampus of offspring, as identified by IBA-1 staining. Together, these data indicate that exposure to MAA, UIS, and MAA-UIS result in changes in the neuroimmune environment of offspring that persist into adulthood.

11.
Front Neurosci ; 17: 1134080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123365

RESUMO

Introduction: Dietary components, such as prebiotic fiber, are known to impact brain chemistry via the gut-brain axis. In particular, short chain fatty acids (SCFAs) generated from excessive soluble fiber consumption are thought to impact neuroimmune signaling and brain function through increased production of neurotropic factors. Given reports that high dietary fiber intake is associated with increased mental health and improved quality of life scores, we set out to identify whether changes in SCFA levels as a result of a high soluble fiber diet mediate hippocampal neuroinflammation and brain derived neurotrophic factor (BDNF) in mice. Methods: Adult male and female C57BL/6 mice were fed a 1-month high pectin fiber or cellulose-based control diet. Following 1 month of excessive pectin consumption, serum SCFAs were measured using gas chromatography-mass spectrometry (GC-MS) and hippocampal cytokines and BDNF were assessed via multiplex magnetic bead immunoassay. Results: Pectin-based fiber diet increased circulating acetic acid in both sexes, with no effect on propionic or butyric acid. In the hippocampus, a high fiber diet decreased TNFa, IL-1ß, IL-6, and IFNγ and increased BDNF levels. Furthermore, increased SCFA levels were inversely correlated with neuroinflammation in the hippocampus, with acetic acid revealed as a strong mediator of increased BDNF production. Conclusion: Collectively, these findings highlight the beneficial effects of fiber-induced molecular changes in a brain region known to influence mood- and cognition-related behaviors. Dietary composition should be considered when developing mental health management plans for men and women with an emphasis on increasing soluble fiber intake.

12.
J Nutr Biochem ; 100: 108903, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748922

RESUMO

Diets high in fat and sugar induce inflammation throughout the body, particularly along the gut-brain axis; however, the way these changes in immune signaling mediate one another remains unknown. We investigated cytokine changes in the brain and colon following prolonged high fat or sugar diet in female and male adult C57BL/6 mice. Ten weeks of high fat diet increased levels of TNFα, IL-1ß, IL-6, IFNγ, and IL-10 in the female hippocampus and altered cytokines in the frontal cortex of both sexes. High sugar diet increased hippocampal cytokines and decreased cytokines in the diencephalon and frontal cortex. In the colon, high fat diet changed cytokine expression in both sexes, while high sugar diet only increased TNFα in males. Causal mediation analysis confirmed that colon IL-10 and IL-6 mediate high fat diet-induced neuroimmune changes in the female hippocampus and male frontal cortex. Additionally, high fat diet increased food consumption and weight gain in both sexes, while high sugar diet decreased male weight gain. These findings reveal a novel causal link between gut and brain inflammation specific to prolonged consumption of high fat, not high sugar, diet. Importantly, this work includes females which have been under-represented in diet research, and demonstrates that diet-induced neuroinflammation varies by brain region between sexes. Furthermore, our data suggest female brains are more vulnerable than males to inflammatory changes following excessive fat and sugar consumption, which may help explain the increased risk of inflammation-associated psychiatric conditions in women who eat a Western Diet rich in both dietary components.


Assuntos
Eixo Encéfalo-Intestino , Encéfalo/metabolismo , Colo/metabolismo , Citocinas/metabolismo , Dieta Hiperlipídica , Açúcares da Dieta/administração & dosagem , Caracteres Sexuais , Animais , Encéfalo/imunologia , Colo/imunologia , Ingestão de Alimentos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Aumento de Peso
13.
Brain Sci ; 12(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36009104

RESUMO

Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders characterized by impaired social interactions and communication skills and repetitive or stereotyped behaviors. Rates of ASD diagnosis continue to rise, with current estimates at 1 in 44 children in the US (Maenner 2021). Epidemiological studies have suggested a link between maternal allergic asthma and an increased likelihood of having a child diagnosed with ASD. However, a lack of robust laboratory models prevents mechanistic research from being carried out. We developed a novel mouse model of maternal asthma-allergy (MAA) and previously reported that offspring from these mothers exhibit behavioral deficits compared to controls. In addition, it was shown that epigenetic regulation of gene expression in microglia was altered in these offspring, including several autism candidate genes. To further elucidate if there is neuroinflammation in the fetus following MAA, we investigated how allergic asthma impacts the maternal environment and inflammatory markers in the placenta and fetal brain during gestation. Female C57Bl/6 mice were primed with ovalbumin (OVA) prior to allergic asthma induction during pregnancy by administering aerosolized ovalbumin or PBS control to pregnant dams at gestational days (GD)9.5, 12.5, and 17.5. Four hours after the final induction, placenta and fetal brains were collected and measured for changes in cytokines using a Luminex bead-based multiplex assay. Placental MAA tissue showed a decrease in interleukin (IL)-17 in male and female offspring. There was a sex-dependent decrease in female monocyte chemoattractant protein 1 (MCP-1). In male placentas, IL-4, C-X-C motif chemokine 10 (CXCL10)-also known as interferon γ-induced protein 10 kDa (IP-10)-and chemokine (C-C motif) ligand 5 (RANTES) were decreased. In fetal brains, elevated inflammatory cytokines were found in MAA offspring when compared to controls. Specifically, interferon-gamma (IFN-γ), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 1α (IL-1α), IL-6, and tumor necrosis factor α (TNFα) were elevated in both males and females. In contrast, a decrease in the cytokine IL-9 was also observed. There were slight sex differences after OVA exposures. Male fetal brains showed elevated levels of macrophage inflammatory protein-2 (MIP-2), whereas female brains showed increased keratinocytes-derived chemokine (KC). In addition, IL-1𝛽 and IP-10 in male fetal brains were decreased. Together, these data indicate that repeated exposure to allergic asthma during pregnancy alters cytokine expression in the fetal environment in a sex-dependent way, resulting in homeostatic and neuroinflammatory alterations in the fetal brain.

14.
Front Neurosci ; 15: 752973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924931

RESUMO

Carriers of the fragile X premutation (PM) can develop a variety of early neurological symptoms, including depression, anxiety and cognitive impairment as well as being at risk for developing the late-onset fragile X-associated tremor/ataxia syndrome (FXTAS). The absence of effective treatments for FXTAS underscores the importance of developing efficacious therapies to reduce the neurological symptoms in elderly PM carriers and FXTAS patients. A recent preliminary study reported that weekly infusions of Allopregnanolone (Allop) may improve deficits in executive function, learning and memory in FXTAS patients. Based on this study we examined whether Allop would improve neurological function in the aged CGG knock-in (CGG KI) dutch mouse, B6.129P2(Cg)-Fmr1tm2Cgr/Cgr, that models much of the symptomatology in PM carriers and FXTAS patients. Wild type and CGG KI mice received 10 weekly injections of Allop (10 mg/kg, s.c.), followed by a battery of behavioral tests of motor function, anxiety, and repetitive behavior, and 5-bromo-2'-deoxyuridine (BrdU) labeling to examine adult neurogenesis. The results provided evidence that Allop in CGG KI mice normalized motor performance and reduced thigmotaxis in the open field, normalized repetitive digging behavior in the marble burying test, but did not appear to increase adult neurogenesis in the hippocampus. Considered together, these results support further examination of Allop as a therapeutic strategy in patients with FXTAS.

15.
Behav Pharmacol ; 21(4): 314-22, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20555255

RESUMO

In the Syrian hamster, treatment with anabolic/androgenic steroids (AAS) throughout adolescence increases dopamine and D2 receptor expression in the anterior hypothalamus (AH), a brain region implicated in the control of aggression. D2 receptor antagonists have reduced aggression in various species and animal models. However, these studies used systemic administration of drugs and reported concomitant changes in mobility. These data complicate the question of whether pharmacology targeting D2 receptors is specific to aggression or whether these drugs exert their antiaggressive effects through nonspecific mechanisms. To resolve this discrepancy, the current studies investigate whether administration of the D2 receptor antagonist eticlopride (0.01-10.0 microg in a final volume of 0.5 microl) into the AH modulates AAS-induced aggression. Antagonism of AH D2 receptors effectively suppressed AAS-induced aggression beginning at the 0.1 microg dose, with higher doses producing a floor effect, when compared with AAS-treated animals injected with saline into the AH. Importantly, these reductions in aggressive responding occurred in the absence of changes in locomotor behavior. Our findings identify a neuroanatomical locus where D2 receptor antagonism suppresses adolescent AAS-induced aggression in the absence of alterations to general mobility.


Assuntos
Agressão/efeitos dos fármacos , Anabolizantes/farmacologia , Androgênios/farmacologia , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/fisiologia , Esteroides/farmacologia , Antagonistas de Androgênios , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/patologia , Cricetinae , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Hipotálamo Anterior/fisiologia , Masculino , Mesocricetus , Microinjeções , Nandrolona/análogos & derivados , Nandrolona/farmacologia , Decanoato de Nandrolona , Salicilamidas/farmacologia , Esteroides/antagonistas & inibidores , Testosterona/análogos & derivados , Testosterona/farmacologia
16.
Environ Health Perspect ; 128(4): 47006, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32293200

RESUMO

BACKGROUND: In an effort to decrease the rates of smoking conventional tobacco cigarettes, electronic cigarettes (e-cigarettes) have been proposed as an effective smoking cessation tool. However, little is known about their toxicological impacts. This is concerning given that e-cigarette use is perceived as less harmful than conventional tobacco cigarettes during pregnancy for both the mother and fetus. OBJECTIVE: The goal of this study was to test the neurodevelopmental consequences of maternal e-cigarette use on adult offspring behavior and neuroimmune outcomes. METHODS: Pregnant female CD-1 mice were randomly assigned to one of three treatment groups (n=8-10 per group) and exposed daily to either filtered air, propylene glycol and vegetable glycerol (50:50 PG/VG vehicle), or to PG/VG with 16mg/mL nicotine (+Nic). Whole-body exposures were carried out for 3 h/d, 7 d/week, from gestational day (GD)0.5 until GD17.5. Adult male and female offspring (8 weeks old) were assessed across a battery of behavioral assessments followed by region-specific quantification of brain cytokines using multiplex immunoassays. RESULTS: Adult offspring of both sexes exposed to +Nic exhibited elevated locomotor activity in the elevated plus maze and altered stress-coping strategies in the forced swim task. Moreover, male and female offspring exposed to PG/VG with and without nicotine had a 5.2% lower object discrimination score in the novel object recognition task. In addition to differences in offspring behavior, maternal e-cigarette exposure with nicotine led to a reduction in interleukin (IL)-4 and interferon-gamma (IFNγ) in the diencephalon, as well as lower levels of hippocampal IFNγ (females only). E-cigarette exposure without nicotine resulted in a 2-fold increase of IL-6 in the cerebellum. DISCUSSION: These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Inflamação/imunologia , Locomoção/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Estresse Psicológico/psicologia , Aerossóis/análise , Animais , Modelos Animais de Doenças , Feminino , Glicerol/efeitos adversos , Inflamação/induzido quimicamente , Camundongos , Nicotina/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Propilenoglicol/efeitos adversos , Distribuição Aleatória , Estresse Psicológico/induzido quimicamente
17.
Horm Behav ; 55(2): 348-55, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19014946

RESUMO

Anabolic androgenic steroid (AAS) treatment throughout adolescence facilitates offensive aggression in male Syrian hamsters (Mesocricetus auratus). The present study was conducted to investigate the role of the dopaminergic system in the modulation of AAS-induced aggressive behavior. Hamsters were administered AAS during adolescence, scored for offensive aggression using the resident-intruder paradigm, and then examined for alterations in DA immunoreactivity in brain regions implicated in the aggressive phenotype, including the anterior hypothalamus (AH), the bed nucleus of the stria terminalis (BNST), the medial and central amygdala (MeA and CeA), the lateral septum (LS) and the ventrolateral hypothalamus (VLH). When compared with non-aggressive sesame-oil-treated controls, aggressive AAS-treated animals showed increased tyrosine hydroxylase immunoreactivity in anterior hypothalamic subnuclei, namely the nucleus circularis (NC) and medial supraoptic nucleus (mSON). In addition, AAS-treated animals showed altered D(2) receptor expression in the AH and the VLH, as measured by D(2)-immunoreactivity. Together these results suggest that alterations in DA synthesis and function together with modifications in D(2) receptor expression in the AH may underlie neuroplastic events which facilitate AAS-induced aggression.


Assuntos
Agressão/efeitos dos fármacos , Dopamina/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Esteroides/administração & dosagem , Tonsila do Cerebelo/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Cricetinae , Imuno-Histoquímica , Masculino , Mesocricetus , Fotomicrografia , Receptores de Dopamina D2/metabolismo , Núcleos Septais/metabolismo , Septo do Cérebro/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Acta Neuropathol Commun ; 7(1): 27, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808398

RESUMO

The fragile X premutation is a CGG trinucleotide repeat expansion between 55 and 200 repeats in the 5'-untranslated region of the fragile X mental retardation 1 (FMR1) gene. Human carriers of the premutation allele are at risk of developing the late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS). Characteristic neuropathology associated with FXTAS includes intranuclear inclusions in neurons and astroglia. Previous studies recapitulated these histopathological features in neurons in a knock-in mouse model, but without significant astroglial pathology. To determine the role of astroglia in FXTAS, we generated a transgenic mouse line (Gfa2-CGG99-eGFP) that selectively expresses a 99-CGG repeat expansion linked to an enhanced green fluorescent protein (eGFP) reporter in astroglia throughout the brain, including cerebellar Bergmann glia. Behaviorally these mice displayed impaired motor performance on the ladder-rung test, but paradoxically better performance on the rotarod. Immunocytochemical analysis revealed that CGG99-eGFP co-localized with GFAP and S-100ß, but not with NeuN, Iba1, or MBP, indicating that CGG99-eGFP expression is specific to astroglia. Ubiquitin-positive intranuclear inclusions were found in eGFP-expressing glia throughout the brain. In addition, intracytoplasmic ubiquitin-positive inclusions were found outside the nucleus in distal astrocyte processes. Intriguingly, intranuclear inclusions, in the absence of eGFP mRNA and eGFP fluorescence, were present in neurons of the hypothalamus and neocortex. Furthermore, intranuclear inclusions in both neurons and astrocytes displayed immunofluorescent labeling for the polyglycine peptide FMRpolyG, implicating FMRpolyG in the pathology found in Gfa2-CGG99 mice. Considered together, these results show that Gfa2-CGG99 expression in mice is sufficient to induce key features of FXTAS pathology, including formation of intranuclear inclusions, translation of FMRpolyG, and deficits in motor function.


Assuntos
Astrócitos/fisiologia , Ataxia/genética , Comunicação Celular/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Transtornos das Habilidades Motoras/genética , Tremor/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Ataxia/metabolismo , Ataxia/patologia , Sequência de Bases , Proteína do X Frágil da Deficiência Intelectual/biossíntese , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos das Habilidades Motoras/metabolismo , Transtornos das Habilidades Motoras/patologia , Tremor/metabolismo , Tremor/patologia
19.
Physiol Behav ; 95(1-2): 176-81, 2008 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-18617196

RESUMO

Risperidone has been shown to be clinically effective for the treatment of aggressive behavior in children, yet until recently no information was available regarding whether risperidone exhibits aggression-specific suppression in preclinical studies employing validated developmentally immature animal models of escalated aggression. Recently, using a pharmacologic animal model of escalated offensive aggression, we reported that acute risperidone treatment selectively and dose-dependently reduces the expression of the adult aggressive phenotype, with a significant reduction in aggressive responses observed at 0.1 mg/kg, i.e., a dose within the range administered to children and adolescents in the clinical setting. This study examined whether repeated exposure to risperidone during puberty would prevent the generation of the highly escalated aggressive phenotype in this animal model. To test this hypothesis, the aggression-eliciting stimulus (i.e., cocaine hydrochloride, 0.5 mg/kg/dayx28 days) was co-administered with an aggression-suppressing dose of risperidone (i.e., 0.1 mg/kg/day) during different time frames of puberty and for varied lengths of time (i.e., 1-4 weeks), and then animals were scored for targeted measures of offensive aggression during late puberty. Risperidone administration prevented the generation of the adult aggressive phenotype, with a complete blockade of matured offensive responses (i.e., lateral attacks and flank/rump bites) seen only after prolonged periods of exposure to risperidone (i.e., 3-4 weeks). The selective prevention of these aggressive responses, while leaving other measures of aggression intact (e.g., upright offensive postures), suggest that risperidone is acting in a highly discriminatory anti-aggressive fashion, targeting neurobehavioral elements important for the mature aggressive response pattern.


Assuntos
Agressão/efeitos dos fármacos , Antipsicóticos/farmacologia , Fenótipo , Risperidona/farmacologia , Fatores Etários , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Cocaína/administração & dosagem , Cricetinae , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/administração & dosagem , Relação Dose-Resposta a Droga , Esquema de Medicação , Mesocricetus , Tempo de Reação/efeitos dos fármacos , Risperidona/administração & dosagem
20.
Neurotoxicology ; 65: 231-240, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29104007

RESUMO

Exposure to fine ambient particulates (PM2.5) during gestation or neonatally has potent neurotoxic effects. While biological and behavioral data indicate a vulnerability to environmental pollutants across distinct neurodevelopmental windows, the behavioral consequences following exposure across the entire developmental period remain unknown. Moreover, several epidemiological studies support a link between developmental exposure to air pollution and an increased risk of later receiving a diagnosis of autism spectrum disorders (ASD), a neurodevelopmental disorder that persists throughout life. In the current study we sought to determine whether perinatal exposure to PM2.5 would reduce sociability and increase repetitive deficits in mice, two hallmark characteristics of ASD. Pregnant female B6C3F1 mice were exposed daily to concentrated ambient PM2.5 (CAPs) (135.8µg/m3) or filtered air (3.1µg/m3) throughout gestation followed by additional exposures to both dams and their litters from days 2-10 postpartum. Adult offspring were subsequently assessed for social and repetitive behaviors at 20 weeks of age. Daily perinatal exposure to CAPs significantly decreased sociability in male and female mice as measured by the social approach task; however, reductions in reciprocal social interaction and increased grooming behavior were only present in male offspring exposed to CAPs. These findings demonstrate that exposure to particulate air pollutants throughout early neurodevelopment induces long lasting behavioral deficits in a sex-dependent manner and may be an underlying cause of neurodevelopmental disorders such as ASD.


Assuntos
Transtorno Autístico/induzido quimicamente , Transtorno Autístico/psicologia , Asseio Animal , Exposição Materna , Material Particulado/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/psicologia , Comportamento Social , Animais , Feminino , Masculino , Camundongos , Tamanho da Partícula , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA