Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(35): 14462-7, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940355

RESUMO

Dendritic spines are the primary sites of excitatory synaptic transmission in the vertebrate brain, and the morphology of these actin-rich structures correlates with synaptic function. Here we demonstrate a unique method for inducing spine enlargement and synaptic potentiation in dispersed hippocampal neurons, and use this technique to identify a coordinator of these processes; Ras-specific guanine nucleotide releasing factor 2 (RasGRF2). RasGRF2 is a dual Ras/Rac guanine nucleotide exchange factor (GEF) that is known to be necessary for long-term potentiation in situ. Contrary to the prevailing assumption, we find RasGRF2's Rac-GEF activity to be essential for synaptic potentiation by using a molecular replacement strategy designed to dissociate Rac- from Ras-GEF activities. Furthermore, we demonstrate that Rac1 activity itself is sufficient to rapidly modulate postsynaptic strength by using a photoactivatable derivative of this small GTPase. Because Rac1 is a major actin regulator, our results support a model where the initial phase of long-term potentiation is driven by the cytoskeleton.


Assuntos
Cálcio/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo , Animais , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Ratos
2.
J Neurosci ; 33(16): 6964-78, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23595754

RESUMO

Excitatory synapses are polarized structures that primarily reside on dendritic spines in the brain. The small GTPase Rac1 regulates the development and plasticity of synapses and spines by modulating actin dynamics. By restricting the Rac1-guanine nucleotide exchange factor Tiam1 to spines, the polarity protein Par3 promotes synapse development by spatially controlling Rac1 activation. However, the mechanism for recruiting Par3 to spines is unknown. Here, we identify brain-specific angiogenesis inhibitor 1 (BAI1) as a synaptic adhesion GPCR that is required for spinogenesis and synaptogenesis in mice and rats. We show that BAI1 interacts with Par3/Tiam1 and recruits these proteins to synaptic sites. BAI1 knockdown results in Par3/Tiam1 mislocalization and loss of activated Rac1 and filamentous actin from spines. Interestingly, BAI1 also mediates Rac-dependent engulfment in professional phagocytes through its interaction with a different Rac1-guanine nucleotide exchange factor module, ELMO/DOCK180. However, this interaction is dispensable for BAI1's role in synapse development because a BAI1 mutant that cannot interact with ELMO/DOCK180 rescues spine defects in BAI1-knockdown neurons, whereas a mutant that cannot interact with Par3/Tiam1 rescues neither spine defects nor Par3 localization. Further, overexpression of Tiam1 rescues BAI1 knockdown spine phenotypes. These results indicate that BAI1 plays an important role in synaptogenesis that is mechanistically distinct from its role in phagocytosis. Furthermore, our results provide the first example of a cell surface receptor that targets members of the PAR polarity complex to synapses.


Assuntos
Proteínas Angiogênicas/metabolismo , Proteínas de Transporte/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Neoplasias/metabolismo , Neurônios/fisiologia , Sinapses/metabolismo , Actinas/metabolismo , Análise de Variância , Proteínas Angiogênicas/genética , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Polaridade Celular/genética , Células Cultivadas , Proteína 4 Homóloga a Disks-Large , Estimulação Elétrica , Eletroporação , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/genética , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Humanos , Imageamento Tridimensional , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação/genética , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso , Técnicas de Patch-Clamp , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Long-Evans , Receptores Acoplados a Proteínas G , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Transfecção , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
3.
Invest Ophthalmol Vis Sci ; 48(6): 2845-57, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17525221

RESUMO

PURPOSE: The acetylation state of histones is modulated by histone deacetylase (HDAC) and histone acetyltransferase and is an important component in regulating gene transcription, including neuronal differentiation. The authors studied the relationship between histone acetylation and the differentiation and survival of the RGC-5 cell line and compared it with nontranscriptional-dependent differentiation with staurosporine. METHODS: The retinal ganglion cell line RGC-5 was treated with trichostatin A (TSA), other HDAC inhibitors, and staurosporine; differentiation, neuritogenesis, neurotrophic factor dependence, and dependence on RNA transcription were assessed. RESULTS: TSA caused significant differentiation and neuritogenesis. Differences between HDAC inhibition and staurosporine differentiation included the proportion of differentiated cells, cell viability, cell morphology, and transcriptional dependence. HDAC inhibition, but not staurosporine differentiation, resulted in RGC-5 cells that were neurotrophic factor dependent. CONCLUSIONS: These results implicate two different mechanisms for RGC-5 differentiation, with a common downstream effect on neurite outgrowth but a differential effect on neurotrophic factor dependence.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos/farmacologia , Células Ganglionares da Retina/citologia , Acetilação , Animais , Anticorpos Monoclonais/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Técnica Indireta de Fluorescência para Anticorpo , Histonas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fatores de Crescimento Neural/farmacologia , Neuritos/fisiologia , Ratos , Células Ganglionares da Retina/enzimologia , Estaurosporina/farmacologia
4.
Dev Cell ; 29(6): 701-15, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24960694

RESUMO

The small GTPase Rac1 orchestrates actin-dependent remodeling essential for numerous cellular processes including synapse development. While precise spatiotemporal regulation of Rac1 is necessary for its function, little is known about the mechanisms that enable Rac1 activators (GEFs) and inhibitors (GAPs) to act in concert to regulate Rac1 signaling. Here, we identify a regulatory complex composed of a Rac-GEF (Tiam1) and a Rac-GAP (Bcr) that cooperate to control excitatory synapse development. Disruption of Bcr function within this complex increases Rac1 activity and dendritic spine remodeling, resulting in excessive synaptic growth that is rescued by Tiam1 inhibition. Notably, EphB receptors utilize the Tiam1-Bcr complex to control synaptogenesis. Following EphB activation, Tiam1 induces Rac1-dependent spine formation, whereas Bcr prevents Rac1-mediated receptor internalization, promoting spine growth over retraction. The finding that a Rac-specific GEF/GAP complex is required to maintain optimal levels of Rac1 signaling provides an important insight into the regulation of small GTPases.


Assuntos
Espinhas Dendríticas/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Proto-Oncogênicas c-bcr/fisiologia , Receptores da Família Eph/metabolismo , Sinapses/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Western Blotting , Eletrofisiologia , Endocitose , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Técnicas Imunoenzimáticas , Imunoprecipitação , Camundongos , Camundongos Knockout , Neuritos/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T
5.
Commun Integr Biol ; 6(6): e27343, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24505509

RESUMO

Excitatory synaptic transmission takes place at actin-rich protrusions called dendritic spines. Strong synaptic input activates NMDA-type glutamate receptors and induces calcium flux into these structures, initiating a program of cytoskeletal rearrangement that results in larger spines with stronger synapses. These changes in synaptic strength are thought to be the primary cellular mechanism underlying learning and memory. We recently reported that the dual Ras/Rac1 guanine nucleotide exchange factor (GEF) RasGRF2 links calcium flux to both spine enlargement and synaptic strengthening through its Rac-GEF activity. Additionally, we demonstrated that acute Rac1 activation is sufficient to enhance synaptic transmission. Since Rac1 is a major regulator of the actin cytoskeleton, these results suggest that the cytoskeleton itself regulates synaptic strengthening. Here we discuss models for how cytoskeletal modifications may enhance synaptic AMPA-type glutamate receptor abundance during long-term potentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA