Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plant Cell ; 31(10): 2491-2509, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31391256

RESUMO

The lipid-derived phytohormone jasmonoyl-isoleucine regulates plant immunity, growth and development in vascular plants by activating genome-wide transcriptional reprogramming. In Arabidopsis (Arabidopsis thaliana), this process is largely orchestrated by the master regulator MYC2 and related transcription factors (TFs). However, the TFs activating this pathway in basal plant lineages are currently unknown. We report the functional conservation of MYC-related TFs between the eudicot Arabidopsis and the liverwort Marchantia polymorpha, a plant belonging to an early diverging lineage of land plants. Phylogenetic analysis suggests that MYC function first appeared in charophycean algae and therefore predates the evolutionary appearance of any other jasmonate pathway component. M. polymorpha possesses two functionally interchangeable MYC genes, one in females and one in males. Similar to AtMYC2, MpMYCs showed nuclear localization, interaction with JASMONATE-ZIM-DOMAIN PROTEIN repressors, and regulation by light. Phenotypic and molecular characterization of loss- and gain-of-function mutants demonstrated that MpMYCs are necessary and sufficient for activating the jasmonate pathway in M. polymorpha, but unlike their Arabidopsis orthologs, do not regulate fertility. Therefore, despite 450 million years of independent evolution, MYCs are functionally conserved between bryophytes and eudicots. Genetic conservation in an early diverging lineage suggests that MYC function existed in the common ancestor of land plants and evolved from a preexisting MYC function in charophycean algae.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclopentanos/metabolismo , Ácidos Graxos Insaturados/farmacologia , Isoleucina/análogos & derivados , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Carofíceas/genética , Embriófitas/genética , Evolução Molecular , Ácidos Graxos Insaturados/química , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , Herbivoria/fisiologia , Isoleucina/metabolismo , Luz , Marchantia/efeitos dos fármacos , Marchantia/genética , Mutação , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Domínios Proteicos/genética , Proteínas Repressoras/metabolismo
2.
Plant Cell Environ ; 43(6): 1558-1570, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32162701

RESUMO

Jasmonate synthesis and signalling are essential for plant defense upregulation upon herbivore or microbial attacks. Stress-induced accumulation of jasmonoyl-isoleucine (JA-Ile), the bioactive hormonal form triggering transcriptional changes, is dynamic and transient because of the existence of potent removal mechanisms. Two JA-Ile turnover pathways operate in Arabidopsis, consisting in cytochrome P450 (CYP94)-mediated oxidation and deconjugation by the amidohydrolases IAR3/ILL6. Understanding their impacts was previously blurred by gene redundancy and compensation mechanisms. Here we address the consequences of blocking these pathways on jasmonate homeostasis and defenses in double-2ah, triple-3cyp mutants, and a quintuple-5ko line deficient in all known JA-Ile-degrading activities. These lines reacted differently to either mechanical wounding/insect attack or fungal infection. Both pathways contributed additively to JA-Ile removal upon wounding, but their impairement had opposite impacts on insect larvae feeding. By contrast, only the ah pathway was essential for JA-Ile turnover upon infection by Botrytis, yet only 3cyp was more fungus-resistant. Despite building-up extreme JA-Ile levels, 5ko displayed near-wild-type resistance in both bioassays. Molecular analysis indicated that restrained JA-Ile catabolism resulted in enhanced defense/resistance only when genes encoding negative regulators were not simultaneously overstimulated. This occurred in discrete stress- and pathway-specific combinations, providing a framework for future defense-enhancing strategies.


Assuntos
Arabidopsis/imunologia , Arabidopsis/fisiologia , Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Transdução de Sinais , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/microbiologia , Botrytis/fisiologia , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Homeostase , Isoleucina/metabolismo , Mutação/genética , Oxilipinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Estresse Fisiológico/genética
3.
Metab Eng ; 48: 150-162, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29852273

RESUMO

To fend off microbial pathogens and herbivores, plants have evolved a wide range of defense strategies such as physical barriers, or the production of anti-digestive proteins or bioactive specialized metabolites. Accumulation of the latter compounds is often regulated by transcriptional activation of the biosynthesis pathway genes by the phytohormone jasmonate-isoleucine. Here, we used our recently developed flower petal transformation method in the medicinal plant Catharanthus roseus to shed light on the complex regulatory mechanisms steering the jasmonate-modulated biosynthesis of monoterpenoid indole alkaloids (MIAs), to which the anti-cancer compounds vinblastine and vincristine belong. By combinatorial overexpression of the transcriptional activators BIS1, ORCA3 and MYC2a, we provide an unprecedented insight into the modular transcriptional control of MIA biosynthesis. Furthermore, we show that the expression of an engineered de-repressed MYC2a triggers a tremendous reprogramming of the MIA pathway, finally leading to massively increased accumulation of at least 23 MIAs. The current study unveils an innovative approach for future metabolic engineering efforts for the production of valuable bioactive plant compounds in non-model plants.


Assuntos
Apocynaceae , Engenharia Metabólica , Proteínas de Plantas , Plantas Geneticamente Modificadas , Alcaloides de Triptamina e Secologanina/metabolismo , Fatores de Transcrição , Apocynaceae/genética , Apocynaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(26): 8130-5, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26080427

RESUMO

Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix-loop-helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Catharanthus/citologia , Catharanthus/genética , Células Cultivadas , Genes de Plantas , Dados de Sequência Molecular , Transcriptoma , Regulação para Cima
5.
Plant J ; 88(1): 3-12, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27342401

RESUMO

Monoterpenoid indole alkaloids (MIAs) are produced as plant defence compounds. In the medicinal plant Catharanthus roseus, they comprise the anticancer compounds vinblastine and vincristine. The iridoid (monoterpenoid) pathway forms one of the two branches that feed MIA biosynthesis and its activation is regulated by the transcription factor (TF) basic helix-loop-helix (bHLH) iridoid synthesis 1 (BIS1). Here, we describe the identification and characterisation of BIS2, a jasmonate (JA)-responsive bHLH TF expressed preferentially in internal phloem-associated parenchyma cells, which transactivates promoters of iridoid biosynthesis genes and can homodimerise or form heterodimers with BIS1. Stable overexpression of BIS2 in C. roseus suspension cells and transient ectopic expression of BIS2 in C. roseus petal limbs resulted in increased transcript accumulation of methylerythritol-4-phosphate and iridoid pathway genes, but not of other MIA genes or triterpenoid genes. Transcript profiling also indicated that BIS2 expression is part of an amplification loop, as it is induced by overexpression of either BIS1 or BIS2. Accordingly, silencing of BIS2 in C. roseus suspension cells completely abolished the JA-induced upregulation of the iridoid pathway genes and subsequent MIA accumulation, despite the presence of induced BIS1, indicating that BIS2 is essential for MIA production in C. roseus.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Medicinais/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Catharanthus/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Plantas Medicinais/genética
6.
Plant Cell Physiol ; 58(9): 1507-1518, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922750

RESUMO

Monoterpenoid indole alkaloids (MIAs) are plant defense compounds and high-value pharmaceuticals. Biosynthesis of the universal MIA precursor, secologanin, is organized between internal phloem-associated parenchyma (IPAP) and epidermis cells. Transporters for intercellular transport of proposed mobile pathway intermediates have remained elusive. Screening of an Arabidopsis thaliana transporter library expressed in Xenopus oocytes identified AtNPF2.9 as a putative iridoid glucoside importer. Eight orthologs were identified in Catharanthus roseus, of which three, CrNPF2.4, CrNPF2.5 and CrNPF2.6, were capable of transporting the iridoid glucosides 7-deoxyloganic acid, loganic acid, loganin and secologanin into oocytes. Based on enzyme expression data and transporter specificity, we propose that several enzymes of the biosynthetic pathway are present in both IPAP and epidermis cells, and that the three transporters are responsible for transporting not only loganic acid, as previously proposed, but multiple intermediates. Identification of the iridoid glucoside-transporting CrNPFs is an important step toward understanding the complex orchestration of the seco-iridioid pathway.


Assuntos
Catharanthus/metabolismo , Glucosídeos Iridoides/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Animais , Bioensaio , Transporte Biológico , Vias Biossintéticas/genética , Catharanthus/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Iridoides/metabolismo , Cinética , Modelos Biológicos , Oócitos/metabolismo , Transporte Proteico , Terpenos/metabolismo , Xenopus/metabolismo
7.
Plant Mol Biol ; 91(6): 673-89, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27086135

RESUMO

Jasmonates, oxylipin-type plant hormones, are implicated in diverse aspects of plant growth development and interaction with the environment. Following diverse developmental and environmental cues, jasmonate is produced, conjugated to the amino acid isoleucine and perceived by a co-receptor complex composed of the Jasmonate ZIM-domain (JAZ) repressor proteins and an E3 ubiquitin ligase complex containing the F-box CORONATINE INSENSITIVE 1 (COI1). This event triggers the degradation of the JAZ proteins and the release of numerous transcription factors, including MYC2 and its homologues, which are otherwise bound and inhibited by the JAZ repressors. Here, we will review the role of the COI1, JAZ and MYC2 proteins in the interaction of the plant with its environment, illustrating the significance of jasmonate signalling, and of the proteins involved, for responses to both biotic stresses caused by insects and numerous microbial pathogens and abiotic stresses caused by adverse climatic conditions. It has also become evident that crosstalk with other hormone signals, as well as light and clock signals, plays an important role in the control and fine-tuning of these stress responses. Finally, we will discuss how several pathogens exploit the jasmonate perception and early signalling machinery to decoy the plants defence systems.


Assuntos
Adaptação Fisiológica , Ciclopentanos/metabolismo , Meio Ambiente , Oxilipinas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Modelos Biológicos
8.
Plant Cell ; 25(8): 3117-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23943862

RESUMO

Arabidopsis thaliana plants fend off insect attack by constitutive and inducible production of toxic metabolites, such as glucosinolates (GSs). A triple mutant lacking MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that are known to additively control jasmonate-related defense responses, was shown to have a highly reduced expression of GS biosynthesis genes. The myc2 myc3 myc4 (myc234) triple mutant was almost completely devoid of GS and was extremely susceptible to the generalist herbivore Spodoptera littoralis. On the contrary, the specialist Pieris brassicae was unaffected by the presence of GS and preferred to feed on wild-type plants. In addition, lack of GS in myc234 drastically modified S. littoralis feeding behavior. Surprisingly, the expression of MYB factors known to regulate GS biosynthesis genes was not altered in myc234, suggesting that MYC2/MYC3/MYC4 are necessary for direct transcriptional activation of GS biosynthesis genes. To support this, chromatin immunoprecipitation analysis showed that MYC2 binds directly to the promoter of several GS biosynthesis genes in vivo. Furthermore, yeast two-hybrid and pull-down experiments indicated that MYC2/MYC3/MYC4 interact directly with GS-related MYBs. This specific MYC-MYB interaction plays a crucial role in the regulation of defense secondary metabolite production and underlines the importance of GS in shaping plant interactions with adapted and nonadapted herbivores.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Comportamento Alimentar/fisiologia , Glucosinolatos/biossíntese , Insetos/fisiologia , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas , Herbivoria/fisiologia , Modelos Biológicos , Mutação/genética , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transativadores/química , Transativadores/genética , Transativadores/metabolismo
9.
Plant Cell ; 23(2): 701-15, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21335373

RESUMO

Jasmonates (JAs) trigger an important transcriptional reprogramming of plant cells to modulate both basal development and stress responses. In spite of the importance of transcriptional regulation, only one transcription factor (TF), the Arabidopsis thaliana basic helix-loop-helix MYC2, has been described so far as a direct target of JAZ repressors. By means of yeast two-hybrid screening and tandem affinity purification strategies, we identified two previously unknown targets of JAZ repressors, the TFs MYC3 and MYC4, phylogenetically closely related to MYC2. We show that MYC3 and MYC4 interact in vitro and in vivo with JAZ repressors and also form homo- and heterodimers with MYC2 and among themselves. They both are nuclear proteins that bind DNA with sequence specificity similar to that of MYC2. Loss-of-function mutations in any of these two TFs impair full responsiveness to JA and enhance the JA insensitivity of myc2 mutants. Moreover, the triple mutant myc2 myc3 myc4 is as impaired as coi1-1 in the activation of several, but not all, JA-mediated responses such as the defense against bacterial pathogens and insect herbivory. Our results show that MYC3 and MYC4 are activators of JA-regulated programs that act additively with MYC2 to regulate specifically different subsets of the JA-dependent transcriptional response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transativadores/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Regulação da Expressão Gênica de Plantas , Mutação , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Repressoras/metabolismo , Especificidade por Substrato , Transativadores/genética , Técnicas do Sistema de Duplo-Híbrido
10.
Sports Med ; 53(Suppl 1): 97-113, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787844

RESUMO

A growing number of companies are developing or using wearable sensor technologies that can monitor, analyse and transmit data from humans in real time that can be used by the sporting, biomedical and media industries. To explore this phenomenon, we describe and review two high-profile sporting events where innovations in wearable technologies were trialled: the Tokyo 2020 Summer Olympic Games (Tokyo 2020, Japan) and the 2022 adidas Road to Records (Germany). These two major sporting events were the first time academic and industry partners came together to implement real-time wearable solutions during major competition, to protect the health of athletes competing in hot and humid environments, as well as to better understand how these metrics can be used moving forwards. Despite the undoubted benefits of such wearables, there are well-founded concerns regarding their use including: (1) limited evidence quantifying the potential beneficial effects of analysing specific parameters, (2) the quality of hardware and provided data, (3) information overload, (4) data security and (5) exaggerated marketing claims. Employment and sporting rules and regulations also need to evolve to facilitate the use of wearable devices. There is also the potential to obtain real-time data that will oblige medical personnel to make crucial decisions around whether their athletes should continue competing or withdraw for health reasons. To protect athletes, the urgent need is to overcome these ethical/data protection concerns and develop wearable technologies that are backed by quality science. The fields of sport and exercise science and medicine provide an excellent platform to understand the impact of wearable sensors on performance, wellness, health, and disease.


Assuntos
Esportes , Dispositivos Eletrônicos Vestíveis , Humanos , Atletas , Exercício Físico , Tecnologia
11.
BMC Plant Biol ; 12: 227, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23194435

RESUMO

BACKGROUND: Plants are sessile and therefore have to perceive and adjust to changes in their environment. The presence of neighbours leads to a competitive situation where resources and space will be limited. Complex adaptive responses to such situation are poorly understood at the molecular level. RESULTS: Using microarrays, we analysed whole-genome expression changes in Arabidopsis thaliana plants subjected to intraspecific competition. The leaf and root transcriptome was strongly altered by competition. Differentially expressed genes were enriched in genes involved in nutrient deficiency (mainly N, P, K), perception of light quality, and responses to abiotic and biotic stresses. Interestingly, performance of the generalist insect Spodoptera littoralis on densely grown plants was significantly reduced, suggesting that plants under competition display enhanced resistance to herbivory. CONCLUSIONS: This study provides a comprehensive list of genes whose expression is affected by intraspecific competition in Arabidopsis. The outcome is a unique response that involves genes related to light, nutrient deficiency, abiotic stress, and defence responses.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Perfilação da Expressão Gênica , Nitrogênio/metabolismo , Especificidade de Órgãos/genética , Fósforo/metabolismo , Estresse Fisiológico/genética , Animais , Arabidopsis/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Larva/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Spodoptera/fisiologia , Estresse Fisiológico/efeitos dos fármacos
12.
J Exp Bot ; 63(2): 727-37, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21994175

RESUMO

The induction of plant defences and their subsequent suppression by insects is thought to be an important factor in the evolutionary arms race between plants and herbivores. Although insect oral secretions (OS) contain elicitors that trigger plant immunity, little is known about the suppressors of plant defences. The Arabidopsis thaliana transcriptome was analysed in response to wounding and OS treatment. The expression of several wound-inducible genes was suppressed after the application of OS from two lepidopteran herbivores, Pieris brassicae and Spodoptera littoralis. This inhibition was correlated with enhanced S. littoralis larval growth, pointing to an effective role of insect OS in suppressing plant defences. Two genes, an ERF/AP2 transcription factor and a proteinase inhibitor, were then studied in more detail. OS-induced suppression lasted for at least 48 h, was independent of the jasmonate or salicylate pathways, and was not due to known elicitors. Interestingly, insect OS attenuated leaf water loss, suggesting that insects have evolved mechanisms to interfere with the induction of water-stress-related defences.


Assuntos
Arabidopsis/fisiologia , Borboletas/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Spodoptera/fisiologia , Estresse Fisiológico/fisiologia , Animais , Arabidopsis/genética , Arabidopsis/parasitologia , Bioensaio , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Herbivoria , Larva/fisiologia , Boca/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oxilipinas/metabolismo , Folhas de Planta/genética , Folhas de Planta/parasitologia , Folhas de Planta/fisiologia , RNA de Plantas/genética , Ácido Salicílico/metabolismo , Transdução de Sinais , Supressão Genética , Transcriptoma
13.
Phytochem Anal ; 23(5): 520-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22323091

RESUMO

INTRODUCTION: The analysis of glucosinolates (GS) is traditionally performed by reverse-phase liquid chromatography coupled to ultraviolet detection after a time-consuming desulphation step, which is required for increased retention. Simpler and more efficient alternative methods that can shorten both sample preparation and analysis are much needed. OBJECTIVE: To evaluate the feasibility of using ultrahigh-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) for the rapid profiling of intact GS. METHODOLOGY: A simple and short extraction of GS from Arabidopsis thaliana leaves was developed. Four sub-2 µm reverse-phase columns were tested for the rapid separation of these polar compounds using formic acid as the chromatographic additive. High-resolution QTOFMS was used to detect and identify GS. RESULTS: A novel charged surface hybrid (CSH) column was found to provide excellent retention and separation of GS within a total running time of 11 min. Twenty-one GS could be identified based on their accurate mass as well as isotopic and fragmentation patterns. The method was applied to determine the changes in GS content that occur after herbivory in Arabidopsis. In addition, we evaluated its applicability to the profiling of other Brassicaceae species. CONCLUSION: The method developed can profile the full range of GS, including the most polar ones, in a shorter time than previous methods, and is highly compatible with mass spectrometric detection.


Assuntos
Arabidopsis/química , Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão/métodos , Glucosinolatos/análise , Folhas de Planta/química , Brassica/química , Fracionamento Químico/instrumentação , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/normas , Cromatografia de Fase Reversa/instrumentação , Cromatografia de Fase Reversa/métodos , Cromatografia de Fase Reversa/normas , Glucose/análogos & derivados , Glucose/química , Glucose/isolamento & purificação , Glucosinolatos/química , Imidoésteres/química , Imidoésteres/isolamento & purificação , Inflorescência/química , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Extratos Vegetais/química , Sementes/química
14.
PLoS Genet ; 4(8): e1000143, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18670649

RESUMO

The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL are controlled by FHY3 (Far-red elongated HYpocotyl 3) and FAR1 (FAr-red impaired Response 1), a related pair of transcription factors, which thus indirectly control phyA nuclear accumulation. FHY1 and FHL preferentially interact with the light-activated form of phyA, but the mechanism by which they enable photoreceptor accumulation in the nucleus remains unsolved. Sequence comparison of numerous FHY1-related proteins indicates that only the NLS located at the N-terminus and the phyA-interaction domain located at the C-terminus are conserved. We demonstrate that these two parts of FHY1 are sufficient for FHY1 function. phyA nuclear accumulation is inhibited in the presence of high levels of FHY1 variants unable to enter the nucleus. Furthermore, nuclear accumulation of phyA becomes light- and FHY1-independent when an NLS sequence is fused to phyA, strongly suggesting that FHY1 mediates nuclear import of light-activated phyA. In accordance with this idea, FHY1 and FHY3 become functionally dispensable in seedlings expressing a constitutively nuclear version of phyA. Our data suggest that the mechanism uncovered in Arabidopsis is conserved in higher plants. Moreover, this mechanism allows us to propose a model explaining why phyA needs a specific nuclear import pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Fitocromo A/metabolismo , Fitocromo/metabolismo , Transporte Ativo do Núcleo Celular/efeitos da radiação , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/química , Núcleo Celular/genética , Luz , Dados de Sequência Molecular , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Fitocromo/química , Fitocromo/genética , Fitocromo A/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Front Plant Sci ; 12: 687406, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113373

RESUMO

Catharanthus roseus produces a diverse range of specialized metabolites of the monoterpenoid indole alkaloid (MIA) class in a heavily branched pathway. Recent great progress in identification of MIA biosynthesis genes revealed that the different pathway branch genes are expressed in a highly cell type- and organ-specific and stress-dependent manner. This implies a complex control by specific transcription factors (TFs), only partly revealed today. We generated and mined a comprehensive compendium of publicly available C. roseus transcriptome data for MIA pathway branch-specific TFs. Functional analysis was performed through extensive comparative gene expression analysis and profiling of over 40 MIA metabolites in the C. roseus flower petal expression system. We identified additional members of the known BIS and ORCA regulators. Further detailed study of the ORCA TFs suggests subfunctionalization of ORCA paralogs in terms of target gene-specific regulation and synergistic activity with the central jasmonate response regulator MYC2. Moreover, we identified specific amino acid residues within the ORCA DNA-binding domains that contribute to the differential regulation of some MIA pathway branches. Our results advance our understanding of TF paralog specificity for which, despite the common occurrence of closely related paralogs in many species, comparative studies are scarce.

16.
Insect Biochem Mol Biol ; 85: 21-31, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28455184

RESUMO

Phytophagous insects have to deal with toxic defense compounds from their host plants. Although it is known that insects have evolved genes and mechanisms to detoxify plant allochemicals, how specialist and generalist precisely respond to specific secondary metabolites at the molecular level is less understood. Here we studied the larval performance and transcriptome of the generalist moth Heliothis virescens and the specialist butterfly Pieris brassicae feeding on Arabidopsis thaliana genotypes with different glucosinolate (GS) levels. H. virescens larvae gained significantly more weight on the GS-deficient mutant quadGS compared to wild-type (Col-0) plants. On the contrary, P. brassicae was unaffected by the presence of GS and performed equally well on both genotypes. Strikingly, there was a considerable differential gene expression in H. virescens larvae feeding on Col-0 compared to quadGS. In contrast, compared to H. virescens, P. brassicae displayed a much-reduced transcriptional activation when fed on both plant genotypes. Transcripts coding for putative detoxification enzymes were significantly upregulated in H. virescens, along with digestive enzymes and transposable elements. These data provide an unprecedented view on transcriptional changes that are specifically activated by GS and illustrate differential molecular responses that are linked to adaptation to diet in lepidopteran herbivores.


Assuntos
Borboletas/efeitos dos fármacos , Glucosinolatos/farmacologia , Herbivoria , Mariposas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Arabidopsis , Borboletas/genética , Borboletas/metabolismo , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Metabólica/genética , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Mariposas/genética , Mariposas/metabolismo , Análise de Sequência de RNA
17.
Front Plant Sci ; 4: 13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23382734

RESUMO

In response to insect herbivory, Arabidopsis plants activate the synthesis of the phytohormone jasmonate-isoleucine, which binds to a complex consisting of the receptor COI1 and JAZ repressors. Upon proteasome-mediated JAZ degradation, basic helix-loop-helix transcription factors (TFs) MYC2, MYC3, and MYC4 become activated and this results in the expression of defense genes. Although the jasmonate (JA) pathway is known to be essential for the massive transcriptional reprogramming that follows herbivory, there is however little information on other TFs that are required for defense against herbivores and whether they contribute significantly to JA-dependent defense gene expression. By transcriptome profiling, we identified 41 TFs that were induced in response to herbivory by the generalist Spodoptera littoralis. Among them, nine genes, including WRKY18, WRKY40, ANAC019, ANAC055, ZAT10, ZAT12, AZF2, ERF13, and RRTF1, were found to play a significant role in resistance to S. littoralis herbivory. Compared to the triple mutant myc234 that is as sensitive as coi1-1 to herbivory, knockout lines of these nine TFs were only partially more sensitive to S. littoralis but, however, some displayed distinct gene expression changes at the whole-genome level. Data thus reveal that MYC2, MYC3, and MYC4 are master regulators of Arabidopsis resistance to a generalist herbivore and identify new genes involved in insect defense.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA