Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(3): e2202470, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36449596

RESUMO

The increasing demand for functional materials and an efficient use of sustainable resources makes the search for new material systems an ever growing endeavor. With this respect, architected (meta-)materials attract considerable interest. Their fabrication at the micro- and nanoscale, however, remains a challenge, especially for composites with highly different phases and unmodified reinforcement fillers. This study demonstrates that it is possible to create a non-cytotoxic nanocomposite ink reinforced by a sustainable phase, cellulose nanocrystals (CNCs), to print and tune complex 3D architectures using two-photon polymerization, thus, advancing the state of knowledge toward the microscale. Micro-compression, high-res scanning electron microscopy, (polarised) Raman spectroscopy, and composite modeling are used to study the structure-property relationships. A 100% stiffness increase is observed already at 4.5 wt% CNC while reaching a high photo-polymerization degree of ≈80% for both neat polymers and CNC-composites. Polarized Raman and the Halpin-Tsai composite-model suggest a random CNC orientation within the polymer matrix. The microscale approach can be used to tune arbitrary small scale CNC-reinforced polymer-composites with comparable feature sizes. The new insights pave the way for future applications where the 3D printing of small structures is essential to improve performances of tissue-scaffolds, extend bio-electronics applications or tailor microscale energy-absorption devices.


Assuntos
Nanocompostos , Nanopartículas , Polímeros/química , Celulose/química , Nanopartículas/química , Nanocompostos/química , Impressão Tridimensional
2.
Nano Lett ; 19(4): 2350-2359, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30811940

RESUMO

Glass has been recently envisioned as a stronger and more robust alternative to silicon in microelectromechanical system applications, including high-frequency resonators and switches. Identifying the dynamic mechanical properties of microscale glass is thus vital for understanding their ability to withstand shocks and vibrations in such demanding applications. However, despite nearly half a century of research, the micromechanical properties of glass and amorphous materials in general are primarily limited to quasi-static strain rates below ∼0.1/s. Here, we report the in situ high-strain-rate experiments of fused silica micropillars inside a scanning electron microscope at strain rates up to 1335/s. A remarkable ductile-brittle-ductile failure mode transition was observed at increasing strain rates from 0.0008 to 1335/s as the deformation flow transitions between homogeneous-serrated-homogeneous regimes. Detailed surface topography investigation of the tested micropillars revealed that at the intermediate strain rate (<∼6/s) serrated flow regime, the load drops are caused by the sequential propagation of individual shear bands. Further, analytical calculations and finite element simulations suggest that the atomistic mechanism responsible for the homogeneous stress-strain curves at very high strain rates (>∼64/s) can be attributed to the simultaneous nucleation of multiple shear bands along with dissipative deformation heating. This unique rate-dependent deformation behavior of the glass micropillars highlights the importance and need of extending such microscale high-strain-rate studies to other amorphous materials such as metallic glasses and amorphous metals and alloys. Such investigations can provide critical insights about the damage tolerance and crashworthiness of these materials for real-life applications.

3.
Small ; 15(22): e1805312, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30951252

RESUMO

The impressive mechanical properties of natural composites, such as nacre, arise from their multiscale hierarchical structures, which span from nano- to macroscale and lead to effective energy dissipation. While some synthetic bioinspired materials have achieved the toughness of natural nacre, current production methods are complex and typically involve toxic chemicals, extreme temperatures, and/or high pressures. Here, the exclusive use of bacteria to produce nacre-inspired layered calcium carbonate-polyglutamate composite materials that reach and exceed the toughness of natural nacre, while additionally exhibiting high extensibility and maintaining high stiffness, is introduced. The extensive diversity of bacterial metabolic abilities and the possibility of genetic engineering allows for the creation of a library of bacterially produced, cost-effective, and eco-friendly composite materials.


Assuntos
Materiais Biomiméticos/química , Nanocompostos/química , Carbonato de Cálcio/química , Microscopia Eletrônica de Varredura , Ácido Poliglutâmico/química
4.
Nat Mater ; 13(7): 740-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24907926

RESUMO

Ageing societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the hierarchical organization of bone. Here, we investigate the mechanical response under monotonic and cyclic compression of both single osteonal lamellae and macroscopic samples containing numerous osteons. Micropillar compression tests in a scanning electron microscope, microindentation and macroscopic compression tests were performed on dry ovine bone to identify the elastic modulus, yield stress, plastic deformation, damage accumulation and failure mechanisms. We found that isolated lamellae exhibit a plastic behaviour, with higher yield stress and ductility but no damage. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behaviour of bone at the microscale to a quasi-brittle response driven by the growth of cracks along interfaces or in the vicinity of pores at the macroscale.


Assuntos
Osso e Ossos/fisiologia , Força Compressiva , Animais , Fenômenos Biomecânicos , Osso e Ossos/ultraestrutura , Microscopia Eletrônica de Varredura , Ovinos/anatomia & histologia , Ovinos/fisiologia , Estresse Mecânico
6.
J Mech Behav Biomed Mater ; 150: 106294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128472

RESUMO

Tissue fixation is a prevalent method for bone conservation. Bone biopsies are typically fixed in formalin, dehydrated in ethanol, and infiltrated with polymethyl methacrylate (PMMA) Since some experiments can only be performed on fixed bone samples, it is essential to understand how fixation affects the measured material properties. The aim of this study was to quantify the influence of tissue fixation on the mechanical properties of cortical ovine bone at the extracellular matrix (ECM) level with state-of-the-art micromechanical techniques. A small section from the middle of the diaphysis of two ovine tibias (3.5 and 5.5 years old) was cut in the middle and polished on each side, resulting in a pair of mirrored surfaces. For each pair, one specimen underwent a fixation protocol involving immersion in formalin, dehydration with ethanol, and infiltration with PMMA. The other specimen (mirrored) was air-dried. Six osteons were selected in both pairs, which could be identified in both specimens. The influence of fixation on the mechanical properties was first analyzed using micropillar compression tests and nanoindentation in dry condition. Additionally, changes in the degree of mineralization were evaluated with Raman spectroscopy in both fixed and native bone ECM. Finally, micro tensile experiments were conducted in the 3.5-year fixed ovine bone ECM and compared to reported properties of unfixed dry ovine bone ECM. Interestingly, we found that tissue fixation does not alter the mechanical properties of ovine cortical bone ECM compared to experiments in dry state. However, animal age increases the degree of mineralization (p = 0.0159) and compressive yield stress (p = 0.041). Tissue fixation appears therefore as a valid conservation technique for investigating the mechanical properties of dehydrated bone ECM.


Assuntos
Formaldeído , Polimetil Metacrilato , Ovinos , Animais , Fixação de Tecidos/métodos , Formaldeído/química , Etanol , Matriz Extracelular
7.
Acta Biomater ; 167: 83-99, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127075

RESUMO

The development of treatment strategies for skeletal diseases relies on the understanding of bone mechanical properties in relation to its structure at different length scales. At the microscale, indention techniques can be used to evaluate the elastic, plastic, and fracture behaviour of bone tissue. Here, we combined in situ high-resolution SRµCT indentation testing and digital volume correlation to elucidate the anisotropic crack propagation, deformation, and fracture of ovine cortical bone under Berkovich and spherical tips. Independently of the indenter type we observed significant dependence of the crack development due to the anisotropy ahead of the tip, with lower strains and smaller crack systems developing in samples indented in the transverse material direction, where the fibrillar bone ultrastructure is largely aligned perpendicular to the indentation direction. Such alignment allows to accommodate the strain energy, inhibiting crack propagation. Higher tensile hoop strains generally correlated with regions that display significant cracking radial to the indenter, indicating a predominant Mode I fracture. This was confirmed by the three-dimensional analysis of crack opening displacements and stress intensity factors along the crack front obtained for the first time from full displacement fields in bone tissue. The X-ray beam significantly influenced the relaxation behaviour independent of the tip. Raman analyses did not show significant changes in specimen composition after irradiation compared to non-irradiated tissue, suggesting an embrittlement process that may be linked to damage of the non-fibrillar organic matrix. This study highlights the importance of three-dimensional investigation of bone deformation and fracture behaviour to explore the mechanisms of bone failure in relation to structural changes due to ageing or disease. STATEMENT OF SIGNIFICANCE: Characterising the three-dimensional deformation and fracture behaviour of bone remains essential to decipher the interplay between structure, function, and composition with the aim to improve fracture prevention strategies. The experimental methodology presented here, combining high-resolution imaging, indentation testing and digital volume correlation, allows us to quantify the local deformation, crack propagation, and fracture modes of cortical bone tissue. Our results highlight the anisotropic behaviour of osteonal bone and the complex crack propagation patterns and fracture modes initiating by the intricate stress states beneath the indenter tip. This is of wide interest not only for the understanding of bone fracture but also to understand other architectured (bio)structures providing an effective way to quantify their toughening mechanisms in relation to their main mechanical function.


Assuntos
Fraturas Ósseas , Síncrotrons , Ovinos , Animais , Anisotropia , Osso e Ossos , Osso Cortical/diagnóstico por imagem , Fraturas Ósseas/diagnóstico por imagem , Estresse Mecânico
8.
JBMR Plus ; 7(12): e10826, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130764

RESUMO

Osteogenesis imperfecta (OI) is a genetic, collagen-related bone disease that increases the incidence of bone fractures. Still, the origin of this brittle mechanical behavior remains unclear. The extracellular matrix (ECM) of OI bone exhibits a higher degree of bone mineralization (DBM), whereas compressive mechanical properties at the ECM level do not appear to be inferior to healthy bone. However, it is unknown if collagen defects alter ECM tensile properties. This study aims to quantify the tensile properties of healthy and OI bone ECM. In three transiliac biopsies (healthy n = 1, OI type I n = 1, OI type III n = 1), 23 microtensile specimens (gauge dimensions 10 × 5 × 2 µm3) were manufactured and loaded quasi-statically under tension in vacuum condition. The resulting loading modulus and ultimate strength were extracted. Interestingly, tensile properties in OI bone ECM were not inferior compared to controls. All specimens revealed a brittle failure behavior. Fracture surfaces were graded according to their mineralized collagen fibers (MCF) orientation into axial, mixed, and transversal fracture surface types (FST). Furthermore, tissue mineral density (TMD) of the biopsy cortices was extracted from micro-computed tomogra[hy (µCT) images. Both FST and TMD are significant factors to predict loading modulus and ultimate strength with an adjusted R 2 of 0.556 (p = 2.65e-05) and 0.46 (p = 2.2e-04), respectively. The influence of MCF orientation and DBM on the mechanical properties of the neighboring ECM was further verified with quantitative polarized Raman spectroscopy (qPRS) and site-matched nanoindentation. MCF orientation and DBM were extracted from the qPRS spectrum, and a second mechanical model was developed to predict the indentation modulus with MCF orientation and DBM (R 2 = 67.4%, p = 7.73e-07). The tensile mechanical properties of the cortical bone ECM of two OI iliac crest biopsies are not lower than the one from a healthy and are primarily dependent on MCF orientation and DBM. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

9.
Acta Biomater ; 164: 332-345, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37059408

RESUMO

The hierarchical design of bio-based nanostructured materials such as bone enables them to combine unique structure-mechanical properties. As one of its main components, water plays an important role in bone's material multiscale mechanical interplay. However, its influence has not been quantified at the length-scale of a mineralised collagen fibre. Here, we couple in situ micropillar compression, and simultaneous synchrotron small angle X-ray scattering (SAXS) and X-ray diffraction (XRD) with a statistical constitutive model. Since the synchrotron data contain statistical information on the nanostructure, we establish a direct connection between experiment and model to identify the rehydrated elasto-plastic micro- and nanomechanical fibre behaviour. Rehydration led to a decrease of 65%-75% in fibre yield stress and compressive strength, and 70% in stiffness with a 3x higher effect on stresses than strains. While in agreement with bone extracellular matrix, the decrease is 1.5-3x higher compared to micro-indentation and macro-compression. Hydration influences mineral more than fibril strain with the highest difference to the macroscale when comparing mineral and tissue levels. The effect of hydration seems to be strongly mediated by ultrastructural interfaces while results provide insights towards mechanical consequences of reported water-mediated structuring of bone apatite. The missing reinforcing capacity of surrounding tissue for an excised fibril array is more pronounced in wet than dry conditions, mainly related to fibril swelling. Differences leading to higher compressive strength between mineralised tissues seem not to depend on rehydration while the lack of kink bands supports the role of water as an elastic embedding influencing energy-absorption mechanisms. STATEMENT OF SIGNIFICANCE: Characterising structure-property-function relationships in hierarchical biological materials helps us to elucidate mechanisms that enable their unique properties. Experimental and computational methods can advance our understanding of their complex behaviour with the potential to inform bio-inspired material development. In this study, we close a gap for bone's fundamental mechanical building block at micro- and nanometre length scales. We establish a direct connection between experiments and simulations by coupling in situ synchrotron tests with a statistical model and quantify the behaviour of rehydrated single mineralised collagen fibres. Results suggest a high influence of hydration on structural interfaces, and the role of water as an elastic embedding by outlining important differences between wet and dry elasto-plastic properties of mineral nanocrystals, fibrils and fibres.


Assuntos
Colágeno , Minerais , Espalhamento a Baixo Ângulo , Estresse Mecânico , Difração de Raios X
10.
Adv Sci (Weinh) ; 10(31): e2302997, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37740703

RESUMO

In this work, the CuAgZr metallic glasses (MGs) are investigated, a promising material for biomedical applications due to their high strength, corrosion resistance, and antibacterial activity. Using an integrated approach of combinatorial synthesis, high-throughput characterization, and machine learning (ML), the mechanical properties of CuAgZr MGs are efficiently explored. The investigation find that post-deposition oxidation in inter-columnar regions with looser packing causes high oxygen content in Cu-rich regions, significantly affecting the alloys' mechanical behavior. The study also reveals that nanoscale structural features greatly impact plastic yielding and flow in the alloys. ML algorithms are tested, and the multi-layer perceptron algorithm produced satisfactory predictions for the alloys' hardness of untested alloys, providing valuable clues for future research. The work demonstrates the potential of using combinatorial synthesis, high-throughput characterization, and ML  techniques to facilitate the development of new MGs with improved strength and economic feasibility.

11.
Bone ; 177: 116920, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769956

RESUMO

Current clinical methods of bone health assessment depend to a great extent on bone mineral density (BMD) measurements. However, these methods only act as a proxy for bone strength and are often only carried out after the fracture occurs. Besides BMD, composition and tissue-level mechanical properties are expected to affect the whole bone's strength and toughness. While the elastic properties of the bone extracellular matrix (ECM) have been extensively investigated over the past two decades, there is still limited knowledge of the yield properties and their relationship to composition and architecture. In the present study, morphological, compositional and micropillar compression bone data was collected from patients who underwent hip arthroplasty. Femoral neck samples from 42 patients were collected together with anonymous clinical information about age, sex and primary diagnosis (coxarthrosis or hip fracture). The femoral neck cortex from the inferomedial region was analyzed in a site-matched manner using a combination of micromechanical testing (nanoindentation, micropillar compression) together with micro-CT and quantitative polarized Raman spectroscopy for both morphological and compositional characterization. Mechanical properties, as well as the sample-level mineral density, were constant over age. Only compositional properties demonstrate weak dependence on patient age: decreasing mineral to matrix ratio (p = 0.02, R2 = 0.13, 2.6 % per decade) and increasing amide I sub-peak ratio I∼1660/I∼1683 (p = 0.04, R2 = 0.11, 1.5 % per decade). The patient's sex and diagnosis did not seem to influence investigated bone properties. A clear zonal dependence between interstitial and osteonal cortical zones was observed for compositional and elastic bone properties (p < 0.0001). Site-matched microscale analysis confirmed that all investigated mechanical properties except yield strain demonstrate a positive correlation with the mineral fraction of bone. The output database is the first to integrate the experimentally assessed microscale yield properties, local tissue composition and morphology with the available patient clinical information. The final dataset was used for bone fracture risk prediction in-silico through the principal component analysis and the Naïve Bayes classification algorithm. The analysis showed that the mineral to matrix ratio, indentation hardness and micropillar yield stress are the most relevant parameters for bone fracture risk prediction at 70 % model accuracy (0.71 AUC). Due to the low number of samples, further studies to build a universal fracture prediction algorithm are anticipated with the higher number of patients (N > 200). The proposed classification algorithm together with the output dataset of bone tissue properties can be used for the future comparison of existing methods to evaluate bone quality as well as to form a better understanding of the mechanisms through which bone tissue is affected by aging or disease.

12.
J Mech Behav Biomed Mater ; 134: 105405, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947925

RESUMO

Preclinical studies often require animal models for in vivo experiments. Particularly in dental research, pig species are extensively used due to their anatomical similarity to humans. However, there is a considerable knowledge gap on the multiscale morphological and mechanical properties of the miniature pigs' jawbones, which is crucial for implant studies and a direct comparison to human tissue. In the present work, we demonstrate a multimodal framework to assess the jawbone quantity and quality for a minipig animal model that could be further extended to humans. Three minipig genotypes, commonly used in dental research, were examined: Yucatan, Göttingen, and Sinclair. Three animals per genotype were tested. Cortical bone samples were extracted from the premolar region of the mandible, opposite to the teeth growth. Global morphological, compositional, and mechanical properties were assessed using micro-computed tomography (micro-CT) together with Raman spectroscopy and nanoindentation measurements, averaged over the sample area. Local mineral-mechanical relationships were investigated with the site-matched Raman spectroscopy and micropillar compression tests. For this, a novel femtosecond laser ablation protocol was developed, allowing high-throughput micropillar fabrication and testing without exposure to high vacuum. At the global averaged sample level, bone relative mineralization demonstrated a significant difference between the genotypes, which was not observed from the complementary micro-CT measurements. Moreover, bone hardness measured by nanoindentation showed a positive trend with the relative mineralization. For all genotypes, significant differences between the relative mineralization and elastic properties were more pronounced within the osteonal regions of cortical bone. Site-matched micropillar compression and Raman spectroscopy highlighted the differences between the genotypes' yield stress and mineral to matrix ratios. The methods used at the global level (averaged over sample area) could be potentially correlated to the medical tools used to assess jawbone toughness and morphology in clinics. On the other hand, the local analysis methods can be applied to quantify compressive bone mechanical properties and their relationship to bone mineralization.


Assuntos
Osso Cortical , Arcada Osseodentária , Animais , Humanos , Mandíbula/diagnóstico por imagem , Suínos , Porco Miniatura , Microtomografia por Raio-X
13.
Acta Biomater ; 120: 135-145, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32428682

RESUMO

Bone features a remarkable combination of toughness and strength which originates from its complex hierarchical structure and motivates its investigation on multiple length scales. Here, in situ microtensile experiments were performed on dry ovine osteonal bone for the first time at the length scale of a single lamella. The micromechanical response was brittle and revealed larger ultimate tensile strength compared to the macroscale (factor of 2.3). Ultimate tensile strength for axial and transverse specimens was 0.35 ± 0.05 GPa and 0.13 ± 0.02 GPa, respectively. A significantly greater strength anisotropy relative to compression was observed (axial to transverse strength ratio of 2.7:1 for tension, 1.3:1 for compression). Fracture surface and transmission electron microscopic analysis suggested that this may be rationalized by a change in failure mode from fibril-matrix interfacial shearing for axial specimens to fibril-matrix debonding in the transverse direction. An improved version of the classic Hashin's composite failure model was applied to describe lamellar bone strength as a function of fibril orientation. Together with our experimental observations, the model suggests that cortical bone strength at the lamellar level is remarkably tolerant to variations of fibrils orientation of about ±30°. This study highlights the importance of investigating bone's hierarchical organization at several length scales for gaining a deeper understanding of its macroscopic fracture behavior. STATEMENT OF SIGNIFICANCE: Understanding bone deformation and failure behavior at different length scales of its hierarchical structure is fundamental for the improvement of bone fracture prevention, as well as for the development of multifunctional bio-inspired materials combining toughness and strength. The experiments reported in this study shed light on the microtensile properties of dry primary osteonal bone and establish a baseline from which to start further investigations in more physiological conditions. Microtensile specimens were stronger than their macroscopic counterparts by a factor of 2.3. Lamellar bone strength seems remarkably tolerant to variations of the sub-lamellar fibril orientation with respect to the loading direction (±30°). This study underlines the importance of studying bone on all length scales for improving our understanding of bone's macroscopic mechanical response.


Assuntos
Osso e Ossos , Fraturas Ósseas , Animais , Osso Cortical , Pressão , Ovinos , Estresse Mecânico , Resistência à Tração
14.
Acta Biomater ; 131: 391-402, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175475

RESUMO

A mechanistic understanding of bone fracture is indispensable for developing improved fracture risk assessment in clinics. Since bone is a hierarchically structured material, gaining such knowledge requires analysis at multiple length scales. Here, the tensile response of cortical bone is characterized at the lamellar length scale under dry and hydrated conditions with the aim of investigating the influence of bone's microstructure and hydration on its microscale strength and toughness. For individual lamellae, bone strength strongly correlates with the underlying mineralized collagen fibrils orientation and shows a 2.3-fold increase compared to the macroscale. When specimen size is increased to a few lamellae, the influence of fibril orientation and the size effect on strength are significantly reduced. These findings highlight the critical influence of defects, such as canaliculi and interlamellar interfaces, when assessing larger volumes. Hydration leads up to a 3-fold strength decrease but activates several toughening mechanisms enabling inelastic deformation. In axial specimens, toughening is seen through fibril bridging and crack kinking. In transverse specimens, water presence leads to a progressive but stable crack growth parallel to the fibril orientation, suggesting crack-tip plasticity at the fibrillar interfaces. This work offers a better understanding of the role of interfaces, porosity, and hydration in crack initiation under tensile loading, which is a crucial step towards improved clinical management of disease-related bone fractures through multiscale modeling approaches. STATEMENT OF SIGNIFICANCE: Bone features a complex hierarchical structure which gives rise to several toughening mechanisms across several length scales. To better understand bone fracture, particularly the changes associated with age and disease, it is essential to investigate bone mechanical response at different levels of its hierarchical structure. For the first time, we were able to observe the nucleation of a single crack in hydrated bone lamellae under well-controlled uniaxial tensile loading conditions. These experiments highlight the role of water, interfaces, defects, and the ratio of defect to specimen size on bone's apparent strength and toughness. Such knowledge can be used in the future to develop multiscale models enabling improved clinical management of disease-related bone fractures.


Assuntos
Osso e Ossos , Fraturas Ósseas , Osso Cortical , Citoesqueleto , Matriz Extracelular , Humanos
15.
Acta Biomater ; 129: 169-177, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34052502

RESUMO

Fibrous biocomposites like bone and tendons exhibit a hierarchical arrangement of their components ranging from the macroscale down to the molecular level. The multiscale complex morphology, together with the correlated orientation of their constituents, contributes significantly to the outstanding mechanical properties of these biomaterials. In this study, a systematic road map is provided to quantify the hierarchical structure of a mineralized turkey leg tendon (MTLT) in a holistic multiscale evaluation by combining micro-Computed Tomography (micro-CT), small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD). We quantify the interplay of the main MTLT components with respect to highly ordered organic parts such as fibrous collagen integrating inorganic components like hydroxyapatite (HA). The microscale fibrous morphology revealing different types of porous features and their orientation was quantified based on micro-CT investigations. The quantitative analysis of the alignment of collagen fibrils and HA crystallites was established from the streak-like signal in SAXS using the Ruland approach and the broadening of azimuthal profiles of the small and wide-angle diffraction peaks. It has been in general agreement that HA crystallites are co-aligned with the nanostructure of mineralized tissue. However, we observe relatively lower degree of orientation of HA crystallites compared to the collagen fibrils, which supports the recent findings of the structural interrelations within mineralized tissues. The generic multiscale characterization approach of this study is relevant to any hierarchically structured biomaterials or bioinspired materials from the µm-nm-Å scale. Hence, it gives the basis for future structure-property relationship investigations and simulations for a wide range of hierarchically structured materials. STATEMENT OF SIGNIFICANCE: Many fibrous biocomposites such as tendon, bone, and wood possess multiscale hierarchical structures, responsible for their exceptional mechanical properties. In this study, the 3-dimensional hierarchical structure, the degree of orientation and composition of mineralized tendon extracted from a turkey leg were quantified using a multimodal X-ray based approach combining small-angle X-ray scattering and wide-angle X-ray diffraction with micro-Computed Tomography. We demonstrate that hydroxyapatite (HA) domains are co-aligned with the nanostructure of mineralized tissue. However, the lower degree of orientation of HA crystallites was observed when compared to the collagen fibrils. The generic multiscale characterization approach of this study is relevant to any hierarchically structured biomaterials or bioinspired materials from the micrometer over the nanometer to the Angström scale level.


Assuntos
Tendões , Espalhamento a Baixo Ângulo , Tendões/diagnóstico por imagem , Difração de Raios X , Microtomografia por Raio-X , Raios X
16.
Acta Biomater ; 131: 403-414, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34245895

RESUMO

The increased risk of fracture in the elderly associated with metabolic conditions like osteoporosis poses a significant strain on health care systems worldwide. Due to bone's hierarchical nature, it is necessary to study its mechanical properties and failure mechanisms at several length scales. We conducted micropillar compression experiments on ovine cortical bone to assess the anisotropic mechanical response at the lamellar scale over a wide range of strain rates (10-4 to 8·102 s-1). At the microscale, lamellar bone exhibits a strain rate sensitivity similar to what is reported at the macroscale suggesting that it is an intrinsic property of the extracellular matrix. Significant shear band thickening was observed at high strain rates by HRSEM and STEM imaging. This is likely caused by the material's inability to accommodate the imposed deformation by propagation of thin kink bands and shear cracks at high strain rates, leading to shear band thickening and nucleation. The post-yield behavior is strain rate and direction dependent: hardening was observed for transverse oriented micropillars and hardening modulus increases with strain rate by a factor of almost 2, while axially oriented micropillars showed strain softening and an increase of the softening peak width and work to ultimate stress as a function of strain rate. This suggests that for compression at the micrometer scale, energy absorption in bone increases with strain rate. This study highlights the importance of investigating bone strength and post-yield behavior at lower length scales, under hydrated conditions and at clinically relevant strain rates. STATEMENT OF SIGNIFICANCE: We performed micropillar compression experiments of ovine cortical bone at two different orientations and over seven orders of magnitude of strain rate. Experiments were performed under humid condition to mimic the natural conditions of bone in a human body using a newly developed micro-indenter setup. The strain rate sensitivity was found to be of a similar magnitude to what has been reported for higher length scales, suggesting that the strain rate sensitivity is an intrinsic property of the bone extracellular matrix. In addition, localized shear deformation in thick bands was observed for the first time at high strain rates, highlighting the importance of investigating bone under conditions representative of an accident or fall at several length scales.


Assuntos
Osso e Ossos , Osso Cortical , Idoso , Animais , Força Compressiva , Matriz Extracelular , Humanos , Pressão , Ovinos , Estresse Mecânico
17.
J Bone Miner Res ; 36(7): 1364-1375, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33740286

RESUMO

Osteogenesis imperfecta (OI) is an inheritable, genetic, and collagen-related disorder leading to an increase in bone fragility, but the origin of its "brittle behavior" is unclear. Because of its complex hierarchical structure, bone behaves differently at various length scales. This study aims to compare mechanical properties of human OI bone with healthy control bone at the extracellular matrix (ECM) level and to quantify the influence of the degree of mineralization. Degree of mineralization and mechanical properties were analyzed under dry conditions in 12 fixed and embedded transiliac crest biopsies (control n = 6, OI type I n = 3, OI type IV n = 2, and OI type III n = 1). Mean degree of mineralization was measured by microcomputed tomography at the biopsy level and the mineral-to-matrix ratio was assessed by Raman spectroscopy at the ECM level. Both methods revealed that the degree of mineralization is higher for OI bone compared with healthy control. Micropillar compression is a novel technique for quantifying post-yield properties of bone at the ECM level. Micropillars (d = 5 µm, h = 10 µm) were fabricated using focused ion beam milling and quasi-statically compressed to capture key post-yield properties such as ultimate strength. The qualitative inspection of the stress-strain curves showed that both OI and healthy control bone have a ductile response at the ECM level. The quantitative results showed that compressive strength is not reduced in OI bone and is increasing with OI severity. Nanoindentation measurements revealed that OI bone tends to have a higher Young's modulus, hardness, and dissipated energy compared with healthy bone. Micropillar strength and indentation modulus increased linearly and significantly (p < .0001) with mineral-to-matrix ratio. In conclusion, this study indicates that compressive mechanical properties of dry OI bone at the iliac crest are not inferior to healthy control at the ECM level and increase with mineralization. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osteogênese Imperfeita , Densidade Óssea , Força Compressiva , Matriz Extracelular , Humanos , Ílio/diagnóstico por imagem , Osteogênese Imperfeita/diagnóstico por imagem , Microtomografia por Raio-X
18.
Acta Biomater ; 119: 390-404, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122147

RESUMO

Bone is a natural composite possessing outstanding mechanical properties combined with a lightweight design. The key feature contributing to this unusual combination of properties is the bone hierarchical organization ranging from the nano- to the macro-scale. Bone anisotropic mechanical properties from two orthogonal planes (along and perpendicular to the main bone axis) have already been widely studied. In this work, we demonstrate the dependence of the microscale compressive mechanical properties on the angle between loading direction and the mineralized collagen fibril orientation in the range between 0° and 82°. For this, we calibrated polarized Raman spectroscopy for quantitative collagen fibril orientation determination and validated the method using widely used techniques (small angle X-ray scattering, micro-computed tomography). We then performed compression tests on bovine cortical bone micropillars with known mineralized collagen fibril angles. A strong dependence of the compressive micromechanical properties of bone on the fibril orientation was found with a high degree of anisotropy for both the elastic modulus (Ea/Et=3.80) and the yield stress (σay/σty=2.54). Moreover, the post-yield behavior was found to depend on the MCF orientation with a transition between softening to hardening behavior at approximately 50°. The combination of methods described in this work allows to reliably determine structure-property relationships of bone at the microscale, which may be used as a measure of bone quality.


Assuntos
Osso Cortical , Análise Espectral Raman , Animais , Osso e Ossos , Bovinos , Módulo de Elasticidade , Estresse Mecânico , Microtomografia por Raio-X
19.
Beilstein J Nanotechnol ; 11: 798-806, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509493

RESUMO

Structural colours have received a lot of attention regarding the reproduction of the vivid colours found in nature. In this study, metal-anodic aluminium oxide (AAO)-Al nanostructures were deposited using a two-step anodization and sputtering process to produce self-ordered anodic aluminium oxide films and a metal layer (8 nm Cr and 25, 17.5 and 10 nm of Au), respectively. AAO films of different thickness were anodized and the Yxy values (Y is the luminance value, and x and y are the chromaticity values) were obtained via reflectance measurements. An empirical model based on the thickness and porosity of the nanostructures was determined, which describes a gamut of colours. The proposed mathematical model can be applied in different fields, such as wavelength absorbers, RGB (red, green, blue) display devices, as well as chemical or optical sensors.

20.
Rev Sci Instrum ; 90(4): 045105, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31042979

RESUMO

High temperature nanoindentation is an emerging field with significant advances in instrumentation, calibration, and experimental protocols reported in the past couple of years. Performing stable and accurate measurements at elevated temperatures holds the key for small scale testing of materials at service temperatures. We report a novel high temperature vacuum nanoindentation system, High Temperature Ultra Nanoindentation Tester (UNHT3 HTV), utilizing active surface referencing and non-contact heating capable of performing measurements up to 800 °C. This nanoindenter is based on the proven Ultra Nano-Hardness Tester (UNHT) design that uses two indentation axes: one for indentation and another for surface referencing. Differential displacement measurement between the two axes enables stable measurements to be performed over long durations. A vacuum level of 10-7 mbar prevents sample surface oxidation at elevated temperatures. The indenter, reference, and sample are heated independently using integrated infrared heaters. The instrumental design details for developing a reliable and accurate high temperature nanoindenter are described. High temperature calibration procedures to minimize thermal drift at elevated temperatures are reported. Indentation data on copper, fused silica, and a hard coating show that this new generation of instrumented indenter can achieve unparalleled stability over the entire temperature range up to 800 °C with minimum thermal drift rates of <2 nm/min at elevated temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA