Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(25): e2202295119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696574

RESUMO

Caveolae are small plasma membrane invaginations, important for control of membrane tension, signaling cascades, and lipid sorting. The caveola coat protein Cavin1 is essential for shaping such high curvature membrane structures. Yet, a mechanistic understanding of how Cavin1 assembles at the membrane interface is lacking. Here, we used model membranes combined with biophysical dissection and computational modeling to show that Cavin1 inserts into membranes. We establish that initial phosphatidylinositol (4, 5) bisphosphate [PI(4,5)P2]-dependent membrane adsorption of the trimeric helical region 1 (HR1) of Cavin1 mediates the subsequent partial separation and membrane insertion of the individual helices. Insertion kinetics of HR1 is further enhanced by the presence of flanking negatively charged disordered regions, which was found important for the coassembly of Cavin1 with Caveolin1 in living cells. We propose that this intricate mechanism potentiates membrane curvature generation and facilitates dynamic rounds of assembly and disassembly of Cavin1 at the membrane.


Assuntos
Cavéolas , Proteínas de Ligação a RNA , Cavéolas/química , Caveolina 1/química , Células HEK293 , Humanos , Fosfatidilinositol 4,5-Difosfato/química , Domínios Proteicos , Transporte Proteico , Proteínas de Ligação a RNA/química , Transdução de Sinais
2.
Biophys J ; 120(8): 1333-1342, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33609496

RESUMO

Membrane insertion of protein domains is an important step in many membrane remodeling processes, for example, in vesicular transport. The membrane area taken up by the protein insertion influences the protein binding affinity as well as the mechanical stress induced in the membrane and thereby its curvature. To our knowledge, this is the first optical measurement of this quantity on a system in equilibrium with direct determination of the number of inserted protein and no further assumptions concerning the binding thermodynamics. Whereas macroscopic total area changes in lipid monolayers are typically measured on a Langmuir film balance, finding the number of inserted proteins without perturbing the system and quantitating any small area changes has posed a challenge. Here, we address both issues by performing two-color fluorescence correlation spectroscopy directly on the monolayer. With a fraction of the protein being fluorescently labeled, the number of inserted proteins is determined in situ without resorting to invasive techniques such as collecting the monolayer by aspiration. The second color channel is exploited to monitor a small fraction of labeled lipids to determine the total area increase. Here, we use this method to determine the insertion area per molecule of Sar1, a protein of the COPII complex, which is involved in transport vesicle formation. Sar1 has an N-terminal amphipathic helix, which is responsible for membrane binding and curvature generation. An insertion area of (3.4 ± 0.8) nm2 was obtained for Sar1 in monolayers from a lipid mixture typically used in COPII reconstitution experiments, in good agreement with the expected insertion area of the Sar1 amphipathic helix. By using the two-color approach, determining insertion areas relies only on local fluorescence measurements. No macroscopic area measurements are needed, giving the method the potential to also be applied to laterally heterogeneous monolayers and bilayers.


Assuntos
Bicamadas Lipídicas , Lipídeos , Ligação Proteica , Espectrometria de Fluorescência , Termodinâmica
3.
Chemistry ; 27(59): 14586-14593, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34406694

RESUMO

Although incorporation of photo-activatable lipids into membranes potentially opens up novel avenues for investigating interactions with proteins, the question of whether diazirine-modified lipids are suitable for such studies, remains under debate. Focusing on the potential for studying lipid/peptide interactions by cross-linking mass spectrometry (XL-MS), we developed a diazirine-modified lipid (DiazPC), and examined its behaviour in membranes incorporating the model α-helical peptide LAVA20. We observed an unexpected backfolding of the diazirine-containing stearoyl chain of the lipid. This surprising behaviour challenges the potential application of DiazPC for future XL-MS studies of peptide and protein/lipid interactions. The observations made for DiazPC most likely represent a general phenomenon for any type of membrane lipids with a polar moiety incorporated into the alkyl chain. Our finding is therefore of importance for future protein/lipid interaction studies relying on modified lipid probes.


Assuntos
Diazometano , Lipídeos de Membrana , Reagentes de Ligações Cruzadas , Espectrometria de Massas , Peptídeos
4.
Phys Chem Chem Phys ; 23(9): 5325-5339, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33634294

RESUMO

How does a small change in the structure of a phospholipid affect its supramolecular assembly? In aqueous suspensions, the substitution of one ester linkage in DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) by an ether linkage alters its phase behaviour completely. To unravel the effect of replacing a phospholipid's ester linkage by an ether linkage in lipid monolayers, we characterized pure monolayers of the model lipid DPPC and its sn-2 ether analogue PHPC (1-palmitoyl-2-O-hexadecyl-sn-glycero-3-phosphocholine) as well as mixtures of both by measurements of surface pressure-molecular area (π-Amol) isotherms. In addition, we used infrared reflection absorption spectroscopy (IRRAS) to study lipid condensation, lipid chain orientation, headgroup hydration, and lipid miscibility in all samples. Mixed monolayers consisting of DPPC and PHPC were studied further using epifluorescence microscopy. Our results indicate a strong influence of the sn-2 ether linkage on headgroup hydration and ordering effects in the regions of the apolar chains and the headgroups. Both effects could originate from changes in glycerol conformation. Furthermore, we observed a second plateau in the π-Amol isotherms of DPPC/PHPC mixtures and analysis of the mixed π-Amol isotherms reveals a non-ideal mixing behaviour of both lipids which may be caused by conformational differences in their headgroups.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , Bicamadas Lipídicas/química , Éteres Fosfolipídicos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Conformação Molecular , Análise de Componente Principal , Propriedades de Superfície , Termodinâmica , Água
5.
Angew Chem Int Ed Engl ; 60(20): 11523-11530, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33599387

RESUMO

Membrane proteins are key players of the cell. Their structure and the interactions they form with their lipid environment are required to understand their function. Here we explore liposomes as membrane mimetics for mass spectrometric analysis of peripheral membrane proteins and peptides. Liposomes are advantageous over other membrane mimetics in that they are easy to prepare, can be varied in size and composition, and are suitable for functional assays. We demonstrate that they dissociate into lipid clusters in the gas phase of a mass spectrometer while intact protein and protein-lipid complexes are retained. We exemplify this approach by employing different liposomes including proteoliposomes of two model peptides/proteins differing in size. Our results pave the way for the general application of liposomes for mass spectrometric analysis of membrane-associated proteins.


Assuntos
Lipossomos/química , Proteínas de Membrana/química , Peptídeos/química , Espectrometria de Massas , Estrutura Molecular
6.
Langmuir ; 36(43): 12804-12815, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33090001

RESUMO

In this study, we characterized monolayers of an azide-modified lipid at the air-water interface, pure and in its mixtures with the model lipid DPPC, with the aim of proving its potential to be applied for photo-cross-linking with other molecules. We chose a phospholipid bearing a terminal azide group in one of its hydrophobic tails to study its monolayer characteristics with the Langmuir film balance technique. Furthermore, we performed infrared reflection absorption spectroscopy (IRRAS) to get detailed insights into the organization of those monolayers as well as high-resolution mass spectrometry (HRMS) to see the effects of UV-irradiation on the lipids' chemical structure and organization. Our results suggest that in expanded monolayers of pure azide-modified membrane lipids, the azido-terminated chain folds back toward the air-water interface. Above the LE/LC (liquid-expanded/liquid-condensed) phase transition, the chains stretched, and thus, the azide group detaches from the interface. From temperature-dependent monolayer compressions, we evaluated all relevant thermodynamic parameters of the monolayers, such as the phase transition pressure, the critical temperature, and the triple point, and compare them to those of model lipids. For future applications, we studied the miscibility of the azide-modified lipid with DPPC in monolayers and found at least a certain miscibility over all investigated mixing ratios ranging from 10 to 75% of the azidolipid. Finally, we irradiated the azidolipid monolayer with UV light at 305 nm and measured photodissociation of the azide, leading to chemical cross-linking with other lipids, which shows the potential to be used as a cross-linking agent within self-assembled lipid or lipid/protein layers.

7.
Langmuir ; 36(12): 3221-3233, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32109064

RESUMO

Phospholipid-coated targeted microbubbles are ultrasound contrast agents that can be used for molecular imaging and enhanced drug delivery. However, a better understanding is needed of their targeting capabilities and how they relate to microstructures in the microbubble coating. Here, we investigated the ligand distribution, lipid phase behavior, and their correlation in targeted microbubbles of clinically relevant sizes, coated with a ternary mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), with PEG40-stearate and DSPE-PEG2000. To investigate the effect of lipid handling prior to microbubble production in DSPC-based microbubbles, the components were either dispersed in aqueous medium (direct method) or first dissolved and mixed in an organic solvent (indirect method). To determine the lipid-phase behavior of all components, experiments were conducted on monolayers at the air/water interface. In comparison to pure DSPC and DPPC, the ternary mixtures had an additional transition plateau around 10-12 mN/m. As confirmed by infrared reflection absorption spectroscopy (IRRAS), this plateau was due to a transition in the conformation of the PEGylated components (mushroom to brush). While the condensed phase domains had a different morphology in the ternary DPPC and DSPC monolayers on the Langmuir trough, the domain morphology was similar in the coating of both ternary DPPC and DSPC microbubbles (1.5-8 µm diameter). The ternary DPPC microbubbles had a homogenous ligand distribution and significantly less liquid condensed (LC) phase area in their coating than the DSPC-based microbubbles. For ternary DSPC microbubbles, the ligand distribution and LC phase area in the coating depended on the lipid handling. The direct method resulted in a heterogeneous ligand distribution, less LC phase area than the indirect method, and the ligand colocalizing with the liquid expanded (LE) phase area. The indirect method resulted in a homogenous ligand distribution with the largest LC phase area. In conclusion, lipid handling prior to microbubble production is of importance for a ternary mixture of DSPC, PEG40-stearate, and DSPE-PEG2000.

8.
Proc Natl Acad Sci U S A ; 114(22): E4360-E4369, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28223496

RESUMO

The EH-domain-containing protein 2 (EHD2) is a dynamin-related ATPase that confines caveolae to the cell surface by restricting the scission and subsequent endocytosis of these membrane pits. For this, EHD2 is thought to first bind to the membrane, then to oligomerize, and finally to detach, in a stringently regulated mechanistic cycle. It is still unclear how ATP is used in this process and whether membrane binding is coupled to conformational changes in the protein. Here, we show that the regulatory N-terminal residues and the EH domain keep the EHD2 dimer in an autoinhibited conformation in solution. By significantly advancing the use of infrared reflection-absorption spectroscopy, we demonstrate that EHD2 adopts an open conformation by tilting the helical domains upon membrane binding. We show that ATP binding enables partial insertion of EHD2 into the membrane, where G-domain-mediated oligomerization occurs. ATP hydrolysis is related to detachment of EHD2 from the membrane. Finally, we demonstrate that the regulation of EHD2 oligomerization in a membrane-bound state is crucial to restrict caveolae dynamics in cells.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Animais , Proteínas de Transporte/genética , Cavéolas/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Camundongos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometria Infravermelho
9.
Langmuir ; 35(16): 5501-5508, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30908063

RESUMO

Liposomal membrane fusion is an important tool to study complex biological fusion mechanisms. We use lipidated derivatives of the specific heterodimeric coiled coil pair E: (EIAALEK)3 and K: (KIAALKE)3 to study and control the fusion of liposomes. In this model system, peptides are tethered to their liposomes via a poly(ethylene glycol) (PEG) spacer and a lipid anchor. The efficiency of the fusion mechanism and function of the peptides is highly affected by the PEG-spacer length and the lipid anchor type. Here, the influence of membrane-fusogen distance on the peptide-membrane interactions and the peptide secondary structures is studied with Langmuir film balance and infrared reflection absorption spectroscopy. We found that the introduction of a spacer to monolayer-tethered peptide E changes its conformation from solvated random coils to homo-oligomers. In contrast, the described peptide-monolayer interaction of peptide K is not affected by the PEG-spacer length. Furthermore, the coexistence of different conformations when both lipopeptides E and K are present at the membrane surface is demonstrated empirically, which has many implications for the design of effective fusogenic recognition units and the field of artificial membrane fusion.


Assuntos
Peptídeos/química , Fusão de Membrana , Tamanho da Partícula , Polietilenoglicóis/química , Estrutura Secundária de Proteína , Propriedades de Superfície
10.
Langmuir ; 35(38): 12439-12450, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31456406

RESUMO

In this study, we describe the miscibility of four azide-modified membrane phospholipids (azidolipids) with conventional phospholipids. The azidolipids bear an azide group at different positions of the sn-1 or sn-2 alkyl chain and they further differ in the type of linkage (ester vs ether) of the sn-2 alkyl chain. Investigations regarding the miscibility of the azidolipids with bilayer-forming phosphatidylcholines will evaluate lipid mixtures that are suitable for the production of stable azidolipid-doped liposomes. These vesicles then serve as model membranes for the incorporation of model peptides or proteins in the future. The miscibility of both types of phospholipids was studied by calorimetric assays, electron microscopy, small-angle X-ray scattering, infrared spectroscopy, and dynamic light scattering to provide a complete biophysical characterization of the mixed systems.


Assuntos
Azidas/química , Fosfatidilcolinas/química , Modelos Moleculares , Conformação Molecular
11.
Langmuir ; 33(43): 12204-12217, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28968121

RESUMO

Mixtures of anionic phospholipids (PG, PA, PS, and CL) with cationic peptides were cospread from a common organic solvent at the air-water interface. The compression of the mixed film was combined with epifluorescence microscopy or infrared reflection adsorption spectroscopy (IRRAS) to gain information on the interactions of the peptide with the different lipids. To evaluate the influence of the amino acid X of peptides with the sequence (KX)4K on the binding, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) was mixed with different peptides with increasing hydrophobicity of the uncharged amino acid X. The monolayer isotherms of DPPG/(KX)4K mixtures show an increased area for the lift-off due to incorporation of the peptide into the liquid-expanded (LE) state of the lipid. The surface pressure for the transition from LE to the liquid-condensed (LC) state is slightly increased for peptides with amino acids X with moderate hydrophobicity. For the most hydrophobic peptide (KL)4K two plateaus are seen at a charge ratio PG to K of 5:1, and a strongly increased transition pressure is observed for a charge ratio of 1:1. Epifluorescence microscopy images and infrared spectroscopy show that the lower plateau corresponds to the LE-LC phase transition of the lipid. The upper plateau is connected with a squeeze-out of the peptide into the subphase. To test the influence of the lipid headgroup structure on peptide binding (KL)4K was cospread with different anionic phospholipids. The shift of the isotherm to larger areas for lift-off and to higher surface pressure for the LE-LC phase transition was observed for all tested anionic lipids. Epifluorescence microscopy reveals the formation of LC domains with extended filaments indicating a decrease in line tension due to accumulation of the peptides at the LC-domain boundaries. This effect depends on the size of the headgroup of the anionic phospholipid.


Assuntos
Peptídeos/química , Ânions , Interações Hidrofóbicas e Hidrofílicas , Fosfolipídeos , Propriedades de Superfície , Água
12.
Phys Chem Chem Phys ; 19(35): 23809-23816, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28621362

RESUMO

At low molecular areas, fluorocarbon-hydrocarbon diblocks (CnF2n+1CmH2m+1, FnHm), when spread as Langmuir monolayers on water, form organized monodisperse circular self-assembled domains, one molecule high and tens of nanometers in diameter. Whether such domains form at high molecular areas (low surface pressures) could until now not be established. Furthermore, the common assumption was that the inner core hydrocarbon chains within these domains were in the liquid state in order to compensate for the difference in the cross-section area between the perfluoroalkyl (∼30 Å2) and alkyl (∼20 Å2) chains. Our IRRAS investigation of F8H16 now establishes (1) that these diblock surface domains do exist at the air/water interface at large molecular areas (zero surface pressure), (2) that they remain essentially unchanged throughout film compression, and (3) that the H16 moieties are actually stretched in an all-trans configuration and tilted by ∼30° with respect to the normal to the monolayer in order to satisfy the greater space requirement of the F8 moieties. Consequently, the core of the domains is in an ordered, crystalline-like state, and the domains can be visualized as solid particles at the air/water interface.

13.
Langmuir ; 32(32): 8102-15, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27442444

RESUMO

The interaction of amphiphilic and triphilic block copolymers with lipid monolayers has been studied. Amphiphilic triblock copolymer PGMA20-PPO34-PGMA20 (GP) is composed of a hydrophobic poly(propylene oxide) (PPO) middle block that is flanked by two hydrophilic poly(glycerol monomethacrylate) (PGMA) side blocks. The attachment of a perfluoro-n-nonyl residue (F9) to either end of GP yields a triphilic polymer with the sequence F9-PGMA20-PPO34-PGMA20-F9 (F-GP). The F9 chains are fluorophilic, i.e., they have a tendency to demix in hydrophilic as well as in lipophilic environments. We investigated (i) the adsorption of both polymers to differently composed lipid monolayers and (ii) the compression behavior of mixed polymer/lipid monolayers. The lipid monolayers are composed of phospholipids with PC or PE headgroups and acyl chains of different length and saturation. Both polymers interact with lipid monolayers by inserting their hydrophobic moieties (PPO, F9). The interaction is markedly enhanced in the presence of F9 chains, which act as membrane anchors. GP inserts into lipid monolayers up to a surface pressure of 30 mN/m, whereas F-GP inserts into monolayers at up to 45 mN/m, suggesting that F-GP also inserts into lipid bilayer membranes. The adsorption of both polymers to lipid monolayers with short acyl chains is favored. Upon compression, a two-step squeeze-out of F-GP occurs, with PPO blocks being released into the aqueous subphase at 28 mN/m and the F9 chains being squeezed out at 48 mN/m. GP is squeezed out in one step at 28 mN/m because of the lack of F9 anchor groups. The liquid expanded (LE) to liquid condensed (LC) phase transition of DPPC and DMPE is maintained in the presence of the polymers, indicating that the polymers can be accommodated in LE- and LC-phase monolayers. These results show how fluorinated moieties can be included in the rational design of membrane-binding polymers.

14.
Biol Chem ; 395(7-8): 905-11, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25003391

RESUMO

The energetics of macromolecular interactions are complex, particularly where protein flexibility is involved. Exploiting serendipitous differences in the plasticity of a series of closely related trypsin variants, we analyzed the enthalpic and entropic contributions accompanying interaction with L45K-eglin C. Binding of the four variants show significant differences in released heat, although the affinities vary little, in accordance with the principle of enthalpy-entropy compensation. Binding of the most disordered variant is almost entirely enthalpically driven, with practically no entropy change. As structures of the complexes reveal negligible differences in protein-inhibitor contacts, we conclude that solvent effects contribute significantly to binding affinities.


Assuntos
Substâncias Macromoleculares/química , Termodinâmica , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Maleabilidade
15.
Biol Chem ; 395(7-8): 769-78, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25003384

RESUMO

The binding of cationic polyamines to negatively charged lipid membranes is driven by electrostatic interactions and additional hydrophobic contributions. We investigated the effect of polyamines with different number of charges and charge separation on the phase transition behavior of vesicles of phosphatidylglycerols (dipalmitoylphosphatidylglycerol and dimyristoylphosphatidylglycerol) to differentiate between effects caused by the number of charges, the charge distance, and the hydrophobicity of the methylene spacer. Using differential scanning calorimetry and Fourier transform infrared spectroscopy complemented with monolayer experiments, we found that the binding constant of polyamines to negatively charged lipid vesicles depends as expected on the number of charges. However, for diamines, the effect of binding on the main phase transition of phosphatidylglycerols (PGs) is also strongly influenced by the charge distance between the ammonium groups in the backbone. Oligoamines with charges separated by two or three methylene groups bind more strongly and have larger stabilizing effects on the lipid gel phase of PGs. With multivalent polyamines, the appearance of several transition peaks points to effects of molecular crowding on the surface, i.e., binding of only two or three charges to the surface in the case of spermine, and possible concomitant domain formation.


Assuntos
Fosfolipídeos/química , Poliaminas/química , Estrutura Molecular , Eletricidade Estática
16.
Langmuir ; 30(26): 7724-35, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24914996

RESUMO

Fusion of lipid membranes is an important natural process for the intra- and intercellular exchange of molecules. However, little is known about the actual fusion mechanism at the molecular level. In this study we examine a system that models the key features of this process. For the molecular recognition between opposing membranes two membrane anchored heterodimer coiled-coil forming peptides called 'E' (EIAALEK)3 and 'K' (KIAALKE)3 were used. Lipid monolayers and IR reflection absorption spectroscopy (IRRAS) revealed the interactions of the peptides 'E', 'K', and their parallel coiled-coil complex 'E/K' with the phospholipid membranes and thereby mimicked the pre- and postfusion states, respectively. The peptides adopted α-helical structures and were incorporated into the monolayers with parallel orientation. The strength of binding to the monolayer differed for the peptides and tethering them to the membrane increased the interactions even further. Remarkably, these interactions played a role even in the postfusion state. These findings shed light on important mechanistic details of the membrane fusion process in this model system. Furthermore, their implications will help to improve the rational design of new artificial membrane fusion systems, which have a wide range of potential applications in supramolecular chemistry and biomedicine.


Assuntos
Lipídeos/química , Fusão de Membrana , Peptídeos/química
17.
Soft Matter ; 10(33): 6147-60, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-24942348

RESUMO

A novel class of symmetric amphi- and triphilic (hydrophilic, lipophilic, fluorophilic) block copolymers has been investigated with respect to their interactions with lipid membranes. The amphiphilic triblock copolymer has the structure PGMA(20)-PPO(34)-PGMA(20) (GP) and it becomes triphilic after attaching perfluoroalkyl moieties (F9) to either end which leads to F(9)-PGMA(20)-PPO(34)-PGMA(20)-F(9) (F-GP). The hydrophobic poly(propylene oxide) (PPO) block is sufficiently long to span a lipid bilayer. The poly(glycerol monomethacrylate) (PGMA) blocks have a high propensity for hydrogen bonding. The hydrophobic and lipophobic perfluoroalkyl moieties have the tendency to phase segregate in aqueous as well as in hydrocarbon environments. We performed differential scanning calorimetry (DSC) measurements on polymer bound lipid vesicles under systematic variation of the bilayer thickness, the nature of the lipid headgroup, and the polymer concentration. The vesicles were composed of phosphatidylcholines (DMPC, DPPC, DAPC, DSPC) or phosphatidylethanolamines (DMPE, DPPE, POPE). We showed that GP as well as F-GP binding have membrane stabilizing and destabilizing components. PPO and F9 blocks insert into the hydrophobic part of the membrane concomitantly with PGMA block adsorption to the lipid headgroup layer. The F9 chains act as additional membrane anchors. The insertion of the PPO blocks of both GP and F-GP could be proven by 2D-NOESY NMR spectroscopy. By fluorescence microscopy we show that F-GP binding increases the porosity of POPC giant unilamellar vesicles (GUVs), allowing the influx of water soluble dyes as well as the translocation of the complete triphilic polymer and its accumulation at the GUV surface. These results open a new route for the rational design of membrane systems with specific properties.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/química , Polímeros/química , Ácidos Polimetacrílicos/química , Propilenoglicóis/química , Acrilatos/química , Adsorção , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Hidrocarbonetos/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Rodaminas/química , Temperatura , Termodinâmica
18.
Biochim Biophys Acta ; 1818(7): 1663-72, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22433675

RESUMO

Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely omithine (Orn), alpha, gamma-diaminobutyric acid (Dab) and alpha, beta-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.


Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Oligopeptídeos/química , Fosfatidilgliceróis/química , Diamino Aminoácidos/química , Diamino Aminoácidos/metabolismo , Aminobutiratos/química , Aminobutiratos/metabolismo , Sítios de Ligação , Calorimetria/métodos , Varredura Diferencial de Calorimetria , Cátions/química , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Lisina/química , Lisina/metabolismo , Lipídeos de Membrana/metabolismo , Oligopeptídeos/metabolismo , Ornitina/química , Ornitina/metabolismo , Transição de Fase , Fosfatidilgliceróis/metabolismo , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Temperatura de Transição
19.
Biochim Biophys Acta Biomembr ; 1864(10): 184004, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841926

RESUMO

Although the incorporation of photo-activatable lipids into membranes potentially opens new avenues for studying interactions with peptides and proteins, the question of whether azide- or diazirine-modified lipids are suitable for such studies remains controversial. We have recently shown that diazirine-modified lipids can indeed form cross-links to membrane peptides after UV activation and that these cross-links can be precisely determined in their position by mass spectrometry (MS). However, we also observed an unexpected backfolding of the lipid's diazirine-containing stearoyl chain to the membrane interface challenging the potential application of this modified lipid for future cross-linking (XL)-MS studies of protein/lipid interactions. In this work, we compared an azide- (AzidoPC) and a diazirine-modified (DiazPC) membrane lipid regarding their self-assembly properties, their mixing behavior with saturated bilayer-forming phospholipids, and their reactivity upon UV activation using differential scanning calorimetry (DSC), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and MS. Mixtures of both modified lipids with DMPC were further used for photo-chemically induced XL experiments with a transmembrane model peptide (KLAW23) to elucidate similarities and differences between the azide and the diazirine moiety. We showed that both photo-reactive lipids can be used to study lipid/peptide and lipid/protein interactions. The AzidoPC proved easier to handle, whereas the DiazPC had fewer degradation products and a higher cross-linking yield. However, the problem of backfolding occurs in both lipids; thus, it seems to be a general phenomenon.


Assuntos
Diazometano , Lipídeos de Membrana , Azidas , Reagentes de Ligações Cruzadas/química , Diazometano/química , Espectrometria de Massas/métodos , Peptídeos , Espalhamento a Baixo Ângulo , Difração de Raios X
20.
Langmuir ; 27(23): 14218-31, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22011020

RESUMO

Amyloid formation plays a causative role in neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Soluble peptides form ß-sheets that subsequently rearrange into fibrils and deposit as amyloid plaques. Many parameters trigger and influence the onset of the ß-sheet formation. Early stages are recently discussed to be cell-toxic. Aiming at understanding various triggers such as interactions with hydrophobic-hydrophilic interfaces and metal ion complexation and their interplay, we investigated a set of model peptides at the air-water interface. We are using a general approach to a variety of diseases such as Alzheimer's disease, Parkinson's disease, and type II diabetes that are connected to amyloid formation. Surface sensitive techniques combined with film balance measurements have been used to assess the conformation of the peptides and their orientation at the air-water interface (IR reflection-absorption spectroscopy). Additionally, the structures of the peptide layers were characterized by grazing incidence X-ray diffraction and X-ray reflectivity. The peptides adsorb to the air-water interface and immediately adopt an α-helical conformation. This helical intermediate transforms into ß-sheets upon further triggering. The factors that result in ß-sheet formation are dependent on the peptide sequence. In general, the interface has the strongest effect on peptide conformation compared to high concentrations or metal ions. Metal ions are able to prevent aggregation in bulk but not at the interface. At the interface, metal ion complexation has only minor effects on the peptide secondary structure, influencing the in-plane structure that is formed in two dimensions. At the air-water interface, increased concentrations or a parallel arrangement of the α-helical intermediates are the most effective triggers. This study reveals the role of various triggers for ß-sheet formation and their complex interplay. Our main finding is that the hydrophobic-hydrophilic interface largely governs the conformation of peptides. Therefore, the present study implies that special care is needed when interpreting data that may be affected by different amounts or types of interfaces during experimentation.


Assuntos
Peptídeos beta-Amiloides/química , Cobre/química , Compostos Organometálicos/química , Zinco/química , Ar , Peptídeos beta-Amiloides/síntese química , Peptídeos beta-Amiloides/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Compostos Organometálicos/síntese química , Estrutura Secundária de Proteína , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA