Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446392

RESUMO

Hydroxylysine glycosylations are post-translational modifications (PTMs) essential for the maturation and homeostasis of fibrillar and non-fibrillar collagen molecules. The multifunctional collagen lysyl hydroxylase 3 (LH3/PLOD3) and the collagen galactosyltransferase GLT25D1 are the human enzymes that have been identified as being responsible for the glycosylation of collagen lysines, although a precise description of the contribution of each enzyme to these essential PTMs has not yet been provided in the literature. LH3/PLOD3 is thought to be capable of performing two chemically distinct collagen glycosyltransferase reactions using the same catalytic site: an inverting beta-1,O-galactosylation of hydroxylysines (Gal-T) and a retaining alpha-1,2-glucosylation of galactosyl hydroxylysines (Glc-T). In this work, we have combined indirect luminescence-based assays with direct mass spectrometry-based assays and molecular structure studies to demonstrate that LH3/PLOD3 only has Glc-T activity and that GLT25D1 only has Gal-T activity. Structure-guided mutagenesis confirmed that the Glc-T activity is defined by key residues in the first-shell environment of the glycosyltransferase catalytic site as well as by long-range contributions from residues within the same glycosyltransferase (GT) domain. By solving the molecular structures and characterizing the interactions and solving the molecular structures of human LH3/PLOD3 in complex with different UDP-sugar analogs, we show how these studies could provide insights for LH3/PLOD3 glycosyltransferase inhibitor development. Collectively, our data provide new tools for the direct investigation of collagen hydroxylysine PTMs and a comprehensive overview of the complex network of shapes, charges, and interactions that enable LH3/PLOD3 glycosyltransferase activities, expanding the molecular framework and facilitating an improved understanding and manipulation of glycosyltransferase functions in biomedical applications.


Assuntos
Glicosiltransferases , Hidroxilisina , Humanos , Glicosiltransferases/genética , Hidroxilisina/metabolismo , Glicosilação , Colágeno/metabolismo , Lisina/metabolismo
2.
Angew Chem Int Ed Engl ; 62(51): e202312517, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37924230

RESUMO

DNA repair protein RAD51 is a key player in the homologous recombination pathway. Upon DNA damage, RAD51 is transported into the nucleus by BRCA2, where it can repair DNA double-strand breaks. Due to the structural complexity and dynamics, researchers have not yet clarified the mechanistic details of every step of RAD51 recruitment and DNA repair. RAD51 possesses an intrinsic tendency to form oligomeric structures, which make it challenging to conduct biochemical and biophysical investigations. Here, for the first time, we report on the isolation and characterization of a human monomeric RAD51 recombinant form, obtained through a double mutation, which preserves the protein's integrity and functionality. We investigated different buffers to identify the most suitable condition needed to definitively stabilize the monomer. The monomer of human RAD51 provides the community with a unique biological tool for investigating RAD51-mediated homologous recombination, and paves the way for more reliable structural, mechanistic, and drug discovery studies.


Assuntos
Recombinação Homóloga , Neoplasias , Rad51 Recombinase , Proteínas Recombinantes , Humanos , Dano ao DNA , Reparo do DNA , Neoplasias/genética , Rad51 Recombinase/química , Rad51 Recombinase/genética , Rad51 Recombinase/isolamento & purificação , Mutação , Estabilidade Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
3.
J Struct Biol ; 213(1): 107696, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33493635

RESUMO

The use of immunomodulatory agents for the treatment of cancer is gaining a growing biopharmaceutical interest. Antibody-cytokine fusion proteins, namely immunocytokines, represent a promising solution for the regulation of the immune system at the site of disease. The three-dimensional arrangement of these molecules can profoundly influence their biological activity and pharmacokinetic properties. Structural techniques might provide important insight in the 3D arrangement of immunocytokines. Here, we performed structure investigations on clinical grade fusion proteins L19-IL2, IL12-L19L19 and L19L19-IL2 to elucidate their quaternary organization. Crystallographic characterization of the common L19 antibody fragment at a resolution of 2.0-Å was combined with low-resolution studies of the full-length chimeric molecules using small-angle synchrotron X-ray scattering (SAXS) and negative stain electron microscopy. Characterization of the full-length quaternary structures of the immunocytokines in solution by SAXS consistently supported the diabody structure in the L19-IL2 immunocytokine and allowed generation of low-resolution models of the chimeric proteins L19L19-IL2 and IL12-L19L19. Comparison with 3D reconstructions obtained from negative-stain electron microscopy revealed marked flexibility associated to the linker regions connecting the cytokine and the antibody components of the chimeric proteins. Collectively, our results indicate that low-resolution molecular structure characterizations provide useful complementary insights for the quality control of immunocytokines, constituting a powerful tool to guide the design and the subsequent optimization steps towards clinical enhancement of these chimeric protein reagents.


Assuntos
Citocinas/química , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Estrutura Molecular , Proteínas Recombinantes de Fusão/química , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
4.
Biochem Soc Trans ; 49(2): 855-866, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33704379

RESUMO

Collagen is a major constituent of the extracellular matrix (ECM) that confers fundamental mechanical properties to tissues. To allow proper folding in triple-helices and organization in quaternary super-structures, collagen molecules require essential post-translational modifications (PTMs), including hydroxylation of proline and lysine residues, and subsequent attachment of glycan moieties (galactose and glucose) to specific hydroxylysine residues on procollagen alpha chains. The resulting galactosyl-hydroxylysine (Gal-Hyl) and less abundant glucosyl-galactosyl-hydroxylysine (Glc-Gal-Hyl) are amongst the simplest glycosylation patterns found in nature and are essential for collagen and ECM homeostasis. These collagen PTMs depend on the activity of specialized glycosyltransferase enzymes. Although their biochemical reactions have been widely studied, several key biological questions about the possible functions of these essential PTMs are still missing. In addition, the lack of three-dimensional structures of collagen glycosyltransferase enzymes hinders our understanding of the catalytic mechanisms producing this modification, as well as the impact of genetic mutations causing severe connective tissue pathologies. In this mini-review, we summarize the current knowledge on the biochemical features of the enzymes involved in the production of collagen glycosylations and the current state-of-the-art methods for the identification and characterization of this important PTM.


Assuntos
Colágeno/metabolismo , Glicosiltransferases/metabolismo , Hidroxilisina/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Colágeno/química , Glicosilação , Humanos , Hidroxilisina/química , Modelos Químicos , Estrutura Molecular , Especificidade por Substrato
5.
Protein Expr Purif ; 172: 105637, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32278001

RESUMO

With many crucial roles in enzymatic aerobic metabolism, the concentration of the heme must be tightly regulated. The heme exporter Feline Leukemia Virus sub-group C Receptor 1a (FLVCR1a), an integral membrane protein with twelve transmembrane helices, is a key player in the maintenance of cellular heme homeostasis. It was first identified as the host receptor for the Feline Leukemia Virus sub-group C (FeLV-C), a retrovirus causing hematological abnormalities in cats and other felines. Mutations in the Flvcr1 were later identified in human patients affected by Posterior Column Ataxia and Retinitis Pigmentosa (PCARP) and Hereditary Sensory and Autonomic Neuropathies (HSANs). Despite being an essential component in heme balance, currently there is a lack in the understanding of its function at the molecular level, including the effect of disease-causing mutations on protein function and structure. Therefore, there is a need for protocols to achieve efficient recombinant production yielding milligram amounts of highly pure protein to be used for biochemical and structural studies. Here, we report the first FLVCR1a reliable protocol suitable for both antibody generation and structural characterisation.


Assuntos
Proteínas de Transporte , Expressão Gênica , Heme , Proteínas de Membrana Transportadoras , Receptores Virais , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Gatos , Humanos , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/isolamento & purificação , Camundongos , Receptores Virais/biossíntese , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
6.
J Med Genet ; 56(9): 629-638, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31129566

RESUMO

BACKGROUND: Pathogenic PLOD3 variants cause a connective tissue disorder (CTD) that has been described rarely. We further characterise this CTD and propose a clinical diagnostic label to improve recognition and diagnosis of PLOD3-related disease. METHODS: Reported PLOD3 phenotypes were compared with known CTDs utilising data from three further individuals from a consanguineous family with a homozygous PLOD3 c.809C>T; p.(Pro270Leu) variant. PLOD3 mRNA expression in the developing embryo was analysed for tissue-specific localisation. Mouse microarray expression data were assessed for phylogenetic gene expression similarities across CTDs with overlapping clinical features. RESULTS: Key clinical features included ocular abnormalities with risk for retinal detachment, sensorineural hearing loss, reduced palmar creases, finger contractures, prominent knees, scoliosis, low bone mineral density, recognisable craniofacial dysmorphisms, developmental delay and risk for vascular dissection. Collated clinical features showed most overlap with Stickler syndrome with variable features of Ehlers-Danlos syndrome (EDS) and epidermolysis bullosa (EB). Human lysyl hydroxylase 3/PLOD3 expression was localised to the developing cochlea, eyes, skin, forelimbs, heart and cartilage, mirroring the clinical phenotype of this disorder. CONCLUSION: These data are consistent with pathogenic variants in PLOD3 resulting in a clinically distinct Stickler-like syndrome with vascular complications and variable features of EDS and EB. Early identification of PLOD3 variants would improve monitoring for comorbidities and may avoid serious adverse ocular and vascular outcomes.


Assuntos
Artrite/diagnóstico , Artrite/genética , Doenças do Tecido Conjuntivo/diagnóstico , Doenças do Tecido Conjuntivo/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Descolamento Retiniano/diagnóstico , Descolamento Retiniano/genética , Doenças Vasculares/diagnóstico , Adolescente , Adulto , Animais , Artrite/complicações , Hibridização Genômica Comparativa , Doenças do Tecido Conjuntivo/complicações , Modelos Animais de Doenças , Fácies , Feminino , Expressão Gênica , Estudos de Associação Genética/métodos , Perda Auditiva Neurossensorial/complicações , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Modelos Moleculares , Mutação , Linhagem , Fenótipo , Filogenia , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/química , Conformação Proteica , Descolamento Retiniano/complicações , Relação Estrutura-Atividade , Doenças Vasculares/etiologia , Sequenciamento do Exoma , Adulto Jovem
7.
Methods Mol Biol ; 2627: 349-371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959458

RESUMO

The recent advances in structural biology, combined with continuously increasing computational capabilities and development of advanced softwares, have drastically simplified the workflow for protein homology modeling. Modeling of individual proteins is nowadays quick and straightforward for a large variety of protein targets, thanks to guided pipelines relying on advanced computational tools and user-friendly interfaces, which have extended and promoted the use of modeling also to scientists not focusing on molecular structures of proteins. Nevertheless, construction of models of multi-protein complexes remains quite challenging for the non-experts, often due to the usage of specific procedures depending on the system under investigation and the need for experimental validation approaches to strengthen the generated output.In this chapter, we provide a brief overview of the approaches enabling generation of multi-protein complex models starting from homology models of individual protein components. Using real-life examples, we include two examples to guide the reader in the generation of homomeric and heteromeric protein models.


Assuntos
Proteínas , Software , Proteínas/química , Simulação de Dinâmica Molecular , Conformação Proteica , Biologia Computacional/métodos , Homologia Estrutural de Proteína
8.
Mol Neurobiol ; 59(12): 7466-7485, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36197591

RESUMO

Neurotrypsin (NT) is a highly specific nervous system multi-domain serine protease best known for its selective processing of the potent synaptic organizer agrin. Its enzymatic activity is thought to influence processes of synaptic plasticity, with its deregulation causing accelerated neuromuscular junction (NMJ) degeneration or contributing to forms of mental retardation. These biological effects are likely to stem from NT-based regulation of agrin signaling. However, dissecting the exact biological implications of NT-agrin interplay is difficult, due to the scarce molecular detail regarding NT activity and NT-agrin interactions. We developed a strategy to reliably produce and purify a catalytically competent engineered variant of NT called "NT-mini" and a library of C-terminal agrin fragments, with which we performed a thorough biochemical and biophysical characterization of NT enzyme functionality. We studied the regulatory effects of calcium ions and heparin, identified NT's heparin-binding domain, and discovered how zinc ions induce modulation of enzymatic activity. Additionally, we investigated myotube differentiation and hippocampal neuron excitability, evidencing a dose-dependent increase in neuronal activity alongside a negative impact on myoblast fusion when using the active NT enzyme. Collectively, our results provide in vitro and cellular foundations to unravel the molecular underpinnings and biological significance of NT-agrin interactions.


Assuntos
Agrina , Fibras Musculares Esqueléticas , Agrina/química , Neurônios , Heparina , Sinapses
9.
Protein Sci ; 31(12): e4486, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36317676

RESUMO

Programmed cell death protein 1 (PD-1) is an immunoregulatory target which is recognized by different monoclonal antibodies, approved for the therapy of multiple types of cancer. Different anti-PD-1 antibodies display different therapeutic properties and there is a pharmaceutical interest to generate and characterize novel anti-PD-1 antibodies. We screened multiple human antibody phage display libraries to target novel epitopes on the PD-1 surface and we discovered a unique and previously undescribed binding specificity (termed D12) from a new antibody library (termed AMG). The library featured antibody fragments in single-chain fragment variable (scFv) format, based on the IGHV3-23*03 (VH ) and IGKV1-39*01 (Vκ) genes. The D12 antibody was characterized by surface plasmon resonance (SPR), cross-reacted with the Cynomolgus monkey antigen and bound to primary human T cells, as shown by flow cytometry. The antibody blocked the PD-1/PD-L1 interaction in vitro with an EC50 value which was comparable to the one of nivolumab, a clinically approved antibody. The fine details of the interaction between D12 and PD-1 were elucidated by x-ray crystallography of the complex at a 3.5 Å resolution, revealing an unprecedented conformational change at the N-terminus of PD-1 following D12 binding, as well as partial overlap with the binding site for the cognate PD-L1 and PD-L2 ligands which prevents their binding. The results of the study suggest that the expansion of antibody library repertoires may facilitate the discovery of novel binding specificities with unique properties that hold promises for the modulation of PD-1 activity in vitro and in vivo.


Assuntos
Antígeno B7-H1 , Bacteriófagos , Animais , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biblioteca de Peptídeos , Macaca fascicularis/genética , Macaca fascicularis/metabolismo , Anticorpos Monoclonais/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Especificidade de Anticorpos
10.
Front Mol Biosci ; 9: 876352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090047

RESUMO

Multifunctional human collagen lysyl hydroxylase (LH/PLOD) enzymes catalyze post-translational hydroxylation and subsequent glycosylation of collagens, enabling their maturation and supramolecular organization in the extracellular matrix (ECM). Recently, the overexpression of LH/PLODs in the tumor microenvironment results in abnormal accumulation of these collagen post-translational modifications, which has been correlated with increased metastatic progression of a wide variety of solid tumors. These observations make LH/PLODs excellent candidates for prospective treatment of aggressive cancers. The recent years have witnessed significant research efforts to facilitate drug discovery on LH/PLODs, including molecular structure characterizations and development of reliable high-throughput enzymatic assays. Using a combination of biochemistry and in silico studies, we characterized the dual role of Fe2+ as simultaneous cofactor and inhibitor of lysyl hydroxylase activity and studied the effect of a promiscuous Fe2+ chelating agent, 2,2'-bipyridil, broadly considered a lysyl hydroxylase inhibitor. We found that at low concentrations, 2,2'-bipyridil unexpectedly enhances the LH enzymatic activity by reducing the inhibitory effect of excess Fe2+. Together, our results show a fine balance between Fe2+-dependent enzymatic activity and Fe2+-induced self-inhibited states, highlighting exquisite differences between LH/PLODs and related Fe2+, 2-oxoglutarate dioxygenases and suggesting that conventional structure-based approaches may not be suited for successful inhibitor development. These insights address outstanding questions regarding druggability of LH/PLOD lysyl hydroxylase catalytic site and provide a solid ground for upcoming drug discovery and screening campaigns.

11.
Transl Res ; 239: 1-17, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400365

RESUMO

Heritable thoracic aortic disease and familial thoracic aortic aneurysm/dissection are important causes of human morbidity/mortality, most without identifiable genetic cause. In a family with familial thoracic aortic aneurysm/dissection, we identified a missense p. (Ser178Arg) variant in PLOD1 segregating with disease, and evaluated PLOD1 enzymatic activity, collagen characteristics and in human aortic vascular smooth muscle cells, studied the effect on function. Comparison with homologous PLOD3 enzyme indicated that the pathogenic variant may affect the N-terminal glycosyltransferase domain, suggesting unprecedented PLOD1 activity. In vitro assays demonstrated that wild-type PLOD1 is capable of processing UDP-glycan donor substrates, and that the variant affects the folding stability of the glycosyltransferase domain and associated enzymatic functions. The PLOD1 substrate lysine was elevated in the proband, however the enzymatic product hydroxylysine and total collagen content was not different, albeit despite collagen fibril narrowing and preservation of collagen turnover. In VSMCs overexpressing wild-type PLOD1, there was upregulation in procollagen gene expression (secretory function) which was attenuated in the variant, consistent with loss-of-function. In comparison, si-PLOD1 cells demonstrated hypercontractility and upregulation of contractile markers, providing evidence for phenotypic switching. Together, the findings suggest that the PLOD1 product is preserved, however newly identified glucosyltransferase activity of PLOD1 appears to be affected by folding stability of the variant, and is associated with compensatory vascular smooth muscle cells phenotypic switching to support collagen production, albeit with less robust fibril girth. Future studies should focus on the impact of PLOD1 folding/variant stability on the tertiary structure of collagen and ECM interactions.


Assuntos
Aneurisma da Aorta Torácica/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Adulto , Substituição de Aminoácidos , Aorta/fisiopatologia , Aneurisma da Aorta Torácica/fisiopatologia , Aneurisma da Aorta Torácica/cirurgia , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Cadeia alfa 1 do Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Feminino , Humanos , Masculino , Músculo Liso Vascular/fisiopatologia , Mutação de Sentido Incorreto , Linhagem , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/química
12.
Nat Commun ; 12(1): 4872, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381052

RESUMO

The Netrin-1 receptor UNC5B is an axon guidance regulator that is also expressed in endothelial cells (ECs), where it finely controls developmental and tumor angiogenesis. In the absence of Netrin-1, UNC5B induces apoptosis that is blocked upon Netrin-1 binding. Here, we identify an UNC5B splicing isoform (called UNC5B-Δ8) expressed exclusively by ECs and generated through exon skipping by NOVA2, an alternative splicing factor regulating vascular development. We show that UNC5B-Δ8 is a constitutively pro-apoptotic splicing isoform insensitive to Netrin-1 and required for specific blood vessel development in an apoptosis-dependent manner. Like NOVA2, UNC5B-Δ8 is aberrantly expressed in colon cancer vasculature where its expression correlates with tumor angiogenesis and poor patient outcome. Collectively, our data identify a mechanism controlling UNC5B's necessary apoptotic function in ECs and suggest that the NOVA2/UNC5B circuit represents a post-transcriptional pathway regulating angiogenesis.


Assuntos
Apoptose , Vasos Sanguíneos/crescimento & desenvolvimento , Receptores de Netrina/metabolismo , Isoformas de RNA/metabolismo , Processamento Alternativo , Animais , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/metabolismo , Células Endoteliais , Humanos , Morfogênese , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Netrina/genética , Netrina-1/metabolismo , Antígeno Neuro-Oncológico Ventral , Isoformas de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Sobrevida , Peixe-Zebra
13.
Genes (Basel) ; 11(4)2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260281

RESUMO

Pathogenic variants in CDH1, encoding epithelial cadherin (E-cadherin), have been implicated in hereditary diffuse gastric cancer (HDGC), lobular breast cancer, and both syndromic and non-syndromic cleft lip/palate (CL/P). Despite the large number of CDH1 mutations described, the nature of the phenotypic consequence of such mutations is currently not able to be predicted, creating significant challenges for genetic counselling. This study collates the phenotype and molecular data for available CDH1 variants that have been classified, using the American College of Medical Genetics and Genomics criteria, as at least 'likely pathogenic', and correlates their molecular and structural characteristics to phenotype. We demonstrate that CDH1 variant type and location differ between HDGC and CL/P, and that there is clustering of CL/P variants within linker regions between the extracellular domains of the cadherin protein. While these differences do not provide for exact prediction of the phenotype for a given mutation, they may contribute to more accurate assessments of risk for HDGC or CL/P for individuals with specific CDH1 variants.


Assuntos
Antígenos CD/genética , Encéfalo/anormalidades , Caderinas/genética , Fenda Labial/genética , Fissura Palatina/genética , Predisposição Genética para Doença , Neoplasias Gástricas/genética , Encéfalo/patologia , Fenda Labial/epidemiologia , Fenda Labial/patologia , Fissura Palatina/epidemiologia , Fissura Palatina/patologia , Feminino , Aconselhamento Genético , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Linhagem , Fenótipo , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/patologia
14.
J Bone Miner Res ; 34(7): 1376-1382, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30721533

RESUMO

PLOD genes encode for procollagen lysyl hydroxylase enzymes (LH/PLOD), a family of proteins essential for collagen biosynthesis. Several mutations affect these genes, causing severe disorders, such as Ehlers-Danlos and Bruck syndrome, as well a connective tissue disease with phenotype resembling osteogenesis imperfecta caused by lack of LH3 functions. The recently determined three-dimensional (3D) structures of the full-length human LH3/PLOD3 isoform, together with the structure of a fragment of a viral LH/PLOD homolog, are now allowing molecular mapping of the numerous disease-causing mutations, providing insights often suitable for the interpretation of the resulting disease phenotypes. However, the added value of molecular structure interpretation is affected by the limited accessibility of complex molecular data to scientific communities lacking direct expertise in structural biology. In this work, we present a Structurally-integrated database for Mutations of PLOD genes (SiMPLOD), a publicly-available manually-curated online database with an embedded molecular viewer interface for the visualization and interpretation of LH/PLOD mutations on available molecular models. Each SiMPLOD entry is accompanied by manual annotations extrapolated from literature references and comments about the localization of the amino acid variants on the molecular structure. Additional links to the appropriate online resources for clinically-relevant as well as biochemical data are also provided in a standardized format. The web application is available at http://fornerislab.unipv.it/SiMPLOD. © 2019 American Society for Bone and Mineral Research.


Assuntos
Bases de Dados de Proteínas , Mutação/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/química , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Interface Usuário-Computador
15.
Nat Commun ; 9(1): 3163, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089812

RESUMO

Lysyl hydroxylases catalyze hydroxylation of collagen lysines, and sustain essential roles in extracellular matrix (ECM) maturation and remodeling. Malfunctions in these enzymes cause severe connective tissue disorders. Human lysyl hydroxylase 3 (LH3/PLOD3) bears multiple enzymatic activities, as it catalyzes collagen lysine hydroxylation and also their subsequent glycosylation. Our understanding of LH3 functions is currently hampered by lack of molecular structure information. Here, we present high resolution crystal structures of full-length human LH3 in complex with cofactors and donor substrates. The elongated homodimeric LH3 architecture shows two distinct catalytic sites at the N- and C-terminal boundaries of each monomer, separated by an accessory domain. The glycosyltransferase domain displays distinguishing features compared to other known glycosyltransferases. Known disease-related mutations map in close proximity to the catalytic sites. Collectively, our results provide a structural framework characterizing the multiple functions of LH3, and the molecular mechanisms of collagen-related diseases involving human lysyl hydroxylases.


Assuntos
Glicosiltransferases/química , Glicosiltransferases/fisiologia , Estrutura Molecular , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/química , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/fisiologia , Sequência de Aminoácidos , Catálise , Domínio Catalítico/genética , Domínio Catalítico/fisiologia , Colágeno/metabolismo , Cristalografia por Raios X , Dimerização , Ativação Enzimática , Ensaios Enzimáticos , Glicosiltransferases/genética , Células HEK293 , Células HeLa , Humanos , Hidroxilação , Lisina/metabolismo , Modelos Moleculares , Proteínas Mutantes/genética , Mutação , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes
16.
Nat Commun ; 9(1): 3912, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237434

RESUMO

The previously published version of this Article contained an error in Figure 3. In panel a, the residues His667 and Asp669 were incorrectly labelled as His627 and Asp629. The error has been corrected in both the PDF and HTML versions of the Article.

17.
Sci Rep ; 6: 27996, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27302108

RESUMO

During bacterial pathogenesis extensive contacts between the human and the bacterial extracellular proteomes take place. The identification of novel host-pathogen interactions by standard methods using a case-by-case approach is laborious and time consuming. To overcome this limitation, we took advantage of large libraries of human and bacterial recombinant proteins. We applied a large-scale protein microarray-based screening on two important human pathogens using two different approaches: (I) 75 human extracellular proteins were tested on 159 spotted Staphylococcus aureus recombinant proteins and (II) Neisseria meningitidis adhesin (NadA), an important vaccine component against serogroup B meningococcus, was screened against ≈2300 spotted human recombinant proteins. The approach presented here allowed the identification of the interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting; and of the interaction between meningococcal NadA and human LOX-1 (low-density oxidized lipoprotein receptor), an endothelial receptor. The novel interactions between bacterial and human extracellular proteins here presented might provide a better understanding of the molecular events underlying S. aureus and N. meningitidis pathogenesis.


Assuntos
Interações Hospedeiro-Patógeno , Neisseria meningitidis/fisiologia , Análise Serial de Proteínas/métodos , Staphylococcus aureus/fisiologia , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Células CHO , Complemento C1q/metabolismo , Cricetulus , Humanos , Ligação Proteica , Proteínas Recombinantes/metabolismo , Receptores Depuradores Classe E/metabolismo
18.
Int J Cell Biol ; 2012: 424072, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22505928

RESUMO

Cisplatin (cisPt) is a chemotherapy agent used as a treatment for several types of cancer. The main cytotoxic effect of cisplatin is generally accepted to be DNA damage. Recently, the mechanism by which cisPt generates the cascade of events involved in the apoptotic process has been demonstrated. In particular it has been shown that some organelles are cisPt target and are involved in cell death. This paper aims to describe the morphological and functional changes of the Golgi apparatus and lysosomes during apoptosis induced in neuronal rat cells (B50) by cisplatin. The results obtained show that the cellular organelles are the target of cisPt, so their damage can induce cell death.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA