Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell Commun Signal ; 16(1): 73, 2018 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390666

RESUMO

BACKGROUND: p130 Crk-associated substrate (p130CAS; also known as BCAR1) is a scaffold protein that modulates many essential cellular processes such as cell adhesion, proliferation, survival, cell migration, and intracellular signaling. p130Cas has been shown to be highly expressed in a variety of human cancers of epithelial origin. However, few data are available regarding the role of p130Cas during normal epithelial development and homeostasis. METHODS: To this end, we have generated a genetically modified mouse in which p130Cas protein was specifically ablated in the epidermal tissue. RESULTS: By using this murine model, we show that p130Cas loss results in increased cell proliferation and reduction of cell adhesion to extracellular matrix. In addition, epidermal deletion of p130Cas protein leads to premature expression of "late" epidermal differentiation markers, altered membrane E-cadherin/catenin proteins localization and aberrant tyrosine phosphorylation of E-cadherin/catenin complexes. Interestingly, these alterations in adhesive properties in absence of p130Cas correlate with abnormalities in progenitor cells balance resulting in the amplification of a more committed cell population. CONCLUSION: Altogether, these results provide evidence that p130Cas is an important regulator of epidermal cell fate and homeostasis.


Assuntos
Adesão Celular , Diferenciação Celular , Proteína Substrato Associada a Crk/deficiência , Proteína Substrato Associada a Crk/genética , Epiderme/metabolismo , Deleção de Genes , Homeostase/genética , Animais , Proliferação de Células , Matriz Extracelular/metabolismo , Queratinócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
2.
Cell Commun Signal ; 16(1): 90, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477510

RESUMO

Following publication of the original article [1], the authors reported an error in the name of the 11th author. The author's name was incorrectly published as "Vincenzo Calautti", instead of "Enzo Calautti".

3.
Gastric Cancer ; 20(4): 629-639, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27995483

RESUMO

BACKGROUND: Most metastatic gastrointestinal stromal tumors (GISTs) develop resistance to the first-line imatinib treatment. Recently, increased vessel density and angiogenic markers were reported in GISTs with a poor prognosis, suggesting that angiogenesis is implicated in GIST tumor progression and resistance. The purpose of this study was to investigate the relationship between tumor vasculature and imatinib resistance in different GIST mouse models using a noninvasive magnetic resonance imaging (MRI) functional approach. METHODS: Immunodeficient mice (n = 8 for each cell line) were grafted with imatinib-sensitive (GIST882 and GIST-T1) and imatinib-resistant (GIST430) human cell lines. Dynamic contrast-enhanced MRI (DCE-MRI) was performed on GIST xenografts to quantify tumor vessel permeability (K trans) and vascular volume fraction (v p). Microvessel density (MVD), permeability (mean dextran density, MDD), and angiogenic markers were evaluated by immunofluorescence and western blot assays. RESULTS: Dynamic contrast-enhanced magnetic resonance imaging showed significantly increased vessel density (P < 0.0001) and permeability (P = 0.0002) in imatinib-resistant tumors compared to imatinib-sensitive ones. Strong positive correlations were observed between MRI estimates, K trans and v p, and their related ex vivo values, MVD (r = 0.78 for K trans and r = 0.82 for v p) and MDD (r = 0.77 for K trans and r = 0.94 for v p). In addition, higher expression of vascular endothelial growth factor receptors (VEGFR2 and VEFGR3) was seen in GIST430. CONCLUSIONS: Dynamic contrast-enhanced magnetic resonance imaging highlighted marked differences in tumor vasculature and microenvironment properties between imatinib-resistant and imatinib-sensitive GISTs, as also confirmed by ex vivo assays. These results provide new insights into the role that DCE-MRI could play in GIST characterization and response to GIST treatment. Validation studies are needed to confirm these findings.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Tumores do Estroma Gastrointestinal/diagnóstico por imagem , Tumores do Estroma Gastrointestinal/patologia , Neovascularização Patológica/diagnóstico por imagem , Animais , Antineoplásicos , Linhagem Celular Tumoral , Meios de Contraste , Xenoenxertos , Humanos , Mesilato de Imatinib , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos
4.
Crit Rev Oncol Hematol ; 169: 103561, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34856311

RESUMO

The increasing number of approved drugs along with next generation sequencing (NGS) technologies look out as potential revolution of biomolecular characterization of non-small-cell lung cancer (NSCLC). Nevertheless, several aspects impact on success rate of NGS in clinical practice: a multidisciplinary approach and thorough knowledge of strengths and limits of each technologic diagnostic tool are required. Crucial preliminary step is the selection of the best available sample before testing, aware of clinical condition and setting of disease. Genomic data should be than integrated in the clinical context and matched with available therapeutic options; Molecular Tumor Boards (MTB) are worldwide emerging interdisciplinary groups implemented to transfer the impact of precision medicine in clinical practice. In order to guarantee equity in treatment, these considerations should find their application widely and rapidly. Aim of this review is offering an overview of emerging biomarkers, relative upcoming targeted drugs, and new diagnostic chances with an authors' perspective about a real-life diagnostic-therapeutic algorithm useful for daily clinical practice.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Mutação , Medicina de Precisão
5.
Crit Rev Oncol Hematol ; 152: 103011, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32521311

RESUMO

Genetic alterations of neurotrophic tropomyosin or tyrosine receptor kinase (NTRK) 1/2/3 genes generate TRK fusion proteins have been reported in a variety of adult and child cancers from diverse cell/tissue lineages. Larotrectinib, a tumour-agnostic TRK inhibitor, has shown remarkable efficacy in a novel "basket" study which has enrolled patients from infants to elderly with different TRK fusion-positive cancers. In this review, we focus on the challenges and expectations on the development of "tumour-agnostic" targeted therapies in rare malignancies.


Assuntos
Neoplasias , Inibidores de Proteínas Quinases/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Proteínas de Fusão Oncogênica
6.
Cancer Cytopathol ; 128(9): 622-628, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32885914

RESUMO

In this review, we describe molecular pathology testing to predict response to targeted treatment of solid tumors, focusing on Italian routine clinical practice. The combination of the universal health care system organized at national, regional, and local levels has led a decentralized model, with a large number of local laboratories performing in-house molecular testing following guidelines issued and external quality assessment organized by the Italian Society of Pathology and Cytopathology-Italian Division of the International Academy of Pathology. In this framework, in the early days of predictive testing, sponsored informatics platforms support to set up national programs that aimed to integrate the activity of oncologists and pathologists to test cancer patients for druggable alterations. More recently, reimbursement for molecular testing is being covered completely by the Italian National Health Service. In the near future, considering the development of complex technologies, we expect that outsourcing samples to next-generation sequencing referral laboratories will take place.


Assuntos
Biomarcadores Tumorais/metabolismo , Citodiagnóstico/métodos , Técnicas de Diagnóstico Molecular/métodos , Neoplasias/patologia , Patologia Molecular/métodos , Medicina de Precisão/normas , Valor Preditivo dos Testes , Humanos , Itália/epidemiologia , Neoplasias/epidemiologia , Neoplasias/metabolismo
7.
Sci Rep ; 7(1): 1145, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28442738

RESUMO

ErbB2 overexpression is detected in approximately 20% of breast cancers and is correlated with poor survival. It was previously shown that the adaptor protein p130Cas/BCAR1 is a crucial mediator of ErbB2 transformation and that its overexpression confers invasive properties to ErbB2-positive human mammary epithelial cells. We herein prove, for the first time, that the transcriptional repressor Blimp1 is a novel mediator of p130Cas/ErbB2-mediated invasiveness. Indeed, high Blimp1 expression levels are detected in invasive p130Cas/ErbB2 cells and correlate with metastatic status in human breast cancer patients. The present study, by using 2D and 3D breast cancer models, shows that the increased Blimp1 expression depends on both MAPK activation and miR-23b downmodulation. Moreover, we demonstrate that Blimp1 triggers cell invasion and metastasis formation via its effects on focal adhesion and survival signaling. These findings unravel the previously unidentified role that transcriptional repressor Blimp1 plays in the control of breast cancer invasiveness.


Assuntos
Neoplasias da Mama/patologia , Proteína Substrato Associada a Crk/metabolismo , Regulação da Expressão Gênica , Invasividade Neoplásica , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Receptor ErbB-2/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos
8.
Oncotarget ; 7(4): 4442-53, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26716506

RESUMO

Overexpression of the ErbB2/HER2 receptor tyrosine kinase occurs in up to 20% of human breast cancers and correlates with aggressive disease. Several efficacious targeted therapies, including antibodies and kinase inhibitors, have been developed but the occurring of resistance to these agents is often observed. New therapeutic agents targeting the endocytic recycling and intracellular trafficking of membrane in tumor cells overexpressing ErbB2 are actually in clinical development. Nevertheless the mechanisms underlying ErbB2 downregulation are still obscure. We have previously demonstrated that the overexpression of the p130Cas adaptor protein in ErbB2 positive breast cancer, promotes tumor aggressiveness and progression. Here we demonstrate that lowering p130Cas expression in breast cancer cells is sufficient to induce ErbB2 degradation by autophagy. Conversely, p130Cas overexpression protects ErbB2 from degradation by autophagy. Furthermore, this autophagy-dependent preferential degradation of ErbB2 in absence of p130Cas is due to an increased ErbB2 ubiquitination. Indeed, the overexpression of p130Cas impairs ErbB2 ubiquitination by inhibiting the binding of Cbl and CHIP E3 ligases to ErbB2. Finally, our results indicate that p130Cas-dependent ErbB2 protection from degradation by autophagy may alter the sensitivity to the humanized monoclonal antibody trastuzumab. Consistently, in human ErbB2 positive breast cancers that develop resistance to trastuzumab, p130Cas expression is significantly increased suggesting that elevated levels of p130Cas can be involved in trastuzumab resistance.


Assuntos
Autofagia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proteína Substrato Associada a Crk/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptor ErbB-2/química , Antineoplásicos/farmacologia , Apoptose , Western Blotting , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/tratamento farmacológico , Carcinoma Lobular/metabolismo , Carcinoma Lobular/patologia , Proliferação de Células , Proteína Substrato Associada a Crk/genética , Feminino , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Prognóstico , Estabilidade Proteica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trastuzumab/farmacologia , Células Tumorais Cultivadas
9.
Gene ; 562(1): 1-7, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25727852

RESUMO

BCAR1 (also known as p130Cas/BCAR1) is an adaptor protein that belongs to the CAS family of scaffold proteins. In the past years, increasing evidence has demonstrated the ability of p130Cas/BCAR1 to activate signaling originating from mechanical stimuli, cell-extracellular matrix (ECM) adhesion and growth factor stimulation cascades during normal development and disease in various biological models. In this review we will specifically discuss the more recent data on the contribution of p130Cas/BCAR1 in the regulation of tissue homeostasis and its potential implications in pathological conditions.


Assuntos
Proteína Substrato Associada a Crk/genética , Regulação da Expressão Gênica , Morfogênese/genética , Neoplasias/genética , Animais , Adesão Celular , Movimento Celular , Proteína Substrato Associada a Crk/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Matriz Extracelular , Homeostase , Humanos , Mecanotransdução Celular , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Especificidade de Órgãos , Fosforilação , Estrutura Terciária de Proteína
10.
Cell Cycle ; 12(15): 2409-22, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23839042

RESUMO

Understanding transcriptional changes during cancer progression is of crucial importance to develop new and more efficacious diagnostic and therapeutic approaches. It is well known that ErbB2 is overexpressed in about 25% of human invasive breast cancers. We have previously demonstrated that p130Cas overexpression synergizes with ErbB2 in mammary cell transformation and promotes ErbB2-dependent invasion in three-dimensional (3D) cultures of human mammary epithelial cells. Here, by comparing coding and non-coding gene expression profiles, we define the invasive signatures associated with concomitant p130Cas overexpression and ErbB2 activation in 3D cultures of mammary epithelial cells. Specifically, we have found that genes involved in amino acids synthesis (CBS, PHGDH), cell motility, migration (ITPKA, PRDM1), and angiogenesis (HEY1) are upregulated, while genes involved in inflammatory response (SAA1, S100A7) are downregulated. In parallel, we have shown that the expression of specific miRNAs is altered. Among these, miR-200b, miR-222, miR-221, miR-R210, and miR-424 are upregulated, while miR-27a, miR-27b, and miR-23b are downregulated. Overall, this study presents, for the first time, the gene expression changes underlying the invasive behavior following p130Cas overexpression in an ErbB2 transformed mammary cell model.


Assuntos
Proteína Substrato Associada a Crk/metabolismo , Células Epiteliais/metabolismo , Glândulas Mamárias Humanas/patologia , Receptor ErbB-2/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Transformada , Movimento Celular , Células Epiteliais/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metionina Sulfóxido Redutases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas dos Microfilamentos , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoglicerato Desidrogenase/metabolismo , Proteína A7 Ligante de Cálcio S100 , Proteínas S100/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA