Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Environ Geochem Health ; 43(1): 77-89, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32728949

RESUMO

Metal(loid) pollution of soils has important negative effects on the environment and human health. For the rehabilitation of these soils, some eco-innovative strategies, such as phytoremediation, could be chosen. This practice could establish a plant cover to reduce the toxicity of the pollutants and stabilize the soil, preventing soil erosion and water leaching; this technique is called phytoremediation. For this, plants need to be tolerant to the pollutants present; thus, phytoremediation can have better outcomes if endemic species of the polluted area are used. Finally, to further improve phytoremediation success, amendments can be applied to ameliorate soil conditions. Different amendments can be used, such as biochar, a good metal(loid) immobilizer, compost, a nutrient-rich product and iron sulfate, an efficient arsenic immobilizer. These amendments can either be applied alone or combined for further positive effects. In this context, a mesocosm experiment was performed to study the effects of three amendments, biochar, compost and iron sulfate, applied alone or combined to a former mine technosol, on the soil properties and the phytoremediation potential of two endemic species, Alnus sp. and Betula sp. Results showed that the different amendments reduced soil acidity and decreased metal(loid) mobility, thus improving plant growth. Both species were able to grow on the amended technosols, but alder seedlings had a much higher growth compared to birch seedlings. Finally, the combination of compost with biochar and/or iron sulfate and the establishment of endemic alder plants could be a solution to rehabilitate a former mine technosol.


Assuntos
Alnus/metabolismo , Betula/metabolismo , Mineração , Poluentes do Solo/metabolismo , Alnus/crescimento & desenvolvimento , Betula/crescimento & desenvolvimento , Biodegradação Ambiental , Carvão Vegetal/metabolismo , Compostagem , Compostos Ferrosos/metabolismo , Humanos , Metaloides/metabolismo , Metais/metabolismo , Plântula/crescimento & desenvolvimento
2.
Ecotoxicol Environ Saf ; 195: 110466, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32200145

RESUMO

Remediation of metal(loid) polluted soils is an important area of research nowadays. In particular, one remediation technique is much studied, phytomanagement. Phytomanagement combines amendment application and plant growth in order to reduce the risk posed by contaminants. Salicaceae plants showed tolerance towards metal(loid)s and the ability to accumulate high amounts of metal(loid)s in their tissue. Amendments are often applied to counterbalance the reduced soil fertility and high metal(loid) concentrations. Two amendments gathered attention over the last decades, biochar (product of biomass pyrolysis), which can be activated for better effects, and redmud (by-product of alumina production). Those two amendments showed ability to improve soil conditions and thus plant growth, although few studied their combined application. Moreover, since metal(loid)s are known to induce the overproduction of reactive oxygen species, it is important to measure the level of oxidative stress in the plant, to which plants respond using enzymatic and non-enzymatic systems. But no studies evaluate the response of Salicaceae plants to metal(loid) stress and amendment application at the biochemical level in a real soil condition. Therefore, a mesocosm study was set up to evaluate the effect of amending a mine soil with redmud combined to diverse biochars on the soil properties and Salix triandra growth, metal(loid) accumulation and stress marker levels. Results showed that all amendment combinations improved the soil fertility, reduced metal(loid) mobility and thus ameliorated Salix triandra growth, which accumulated metal(loid)s mainly in its roots. Moreover, among the different amendment combinations, Salix triandra plants still suffered from oxidative stress when grown on PG soil amended with redmud and chemical activated carbon, showing elevated levels of phenolic compounds and salicinoids and important antioxidant and enzymatic activities. Finally, one treatment showed levels of these stress markers similar or lower than the control, the combination of redmud with steam activated carbon. In conclusion, this treatment seemed a good solution in a phytomanagement strategy using Salix triandra, improving soil conditions and plant growth and reducing oxidative stress level in the plant roots.


Assuntos
Carvão Vegetal , Metaloides/metabolismo , Metais/metabolismo , Estresse Oxidativo , Salix/metabolismo , Poluentes do Solo/metabolismo , Óxido de Alumínio , Biodegradação Ambiental , Metaloides/toxicidade , Metais/toxicidade , Salix/efeitos dos fármacos , Salix/crescimento & desenvolvimento , Solo/química , Poluentes do Solo/toxicidade
3.
Ann Bot ; 118(4): 865-883, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27558889

RESUMO

Background and Aims Progress has been made in understanding the physiological and molecular basis of root response to mechanical stress, especially in the model plant Arabidopsis thaliana, in which bending causes the initiation of lateral root primordia toward the convex side of the bent root. In the case of woody roots, it has been reported that mechanical stress induces an asymmetric distribution of lateral roots and reaction wood formation, but the mechanisms underlying these responses are largely unknown. In the present work, the hypothesis was tested that bending could determine an asymmetric response in the two sides of the main root axis as cells are stretched on the convex side and compressed on the concave side. Methods Woody taproots of 20 seedlings were bent to an angle of 90° using a steel net. Changes in the anatomy, lignin and phytohormone content and proteome expression in the two sides of the bent root were analysed; anatomical changes, including dissimilarities and similarities to those found in poplar bent woody stem, were also considered. Key Results Compression forces at the concave side of poplar root induced the formation of reaction wood which presented a high lignin content and was associated with the induction of cambium cell activity. Auxin seemed to be the main hormone triggering lignin deposition and cell wall strengthening in the concave sides. Abscisic acid appeared to function in the water stress response induced by xylem structures and/or osmotic alterations in the compression sides, whereas gibberellins may control cell elongation and gravitropisms. Conclusions Poplar root reaction wood showed characteristics different from those produced in bent stem. Besides providing biomechanical functions, a bent root ensures water uptake and transport in the deforming condition induced by tension and compression forces by two different strategies: an increase in xylem thickness in the compressed side, and lateral root formation in the tension side.

4.
Planta ; 242(1): 339-51, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25963516

RESUMO

MAIN CONCLUSION: The paper reports for the first time, in poplar woody root, the expression of five mechanically-responsive miRNAs. The observed highly complex expression pattern of these miRNAs in the bent root suggest that their expression is not only regulated by tension and compression forces highlighting their role in several important processes, i.e., lateral root formation, lignin deposition, and response to bending stress. Mechanical stress is one of the major abiotic stresses significantly affecting plant stability, growth, survival, and reproduction. Plants have developed complex machineries to detect mechanical perturbations and to improve their anchorage. MicroRNAs (miRNAs), small non-coding RNAs (18-24 nucleotides long), have been shown to regulate various stress-responsive genes, proteins and transcription factors, and play a crucial role in counteracting adverse conditions. Several mechanical stress-responsive miRNAs have been identified in the stem of Populus trichocarpa plants subjected to bending stress. However, despite the pivotal role of woody roots in plant anchorage, molecular mechanisms regulating poplar woody root responses to mechanical stress have still been little investigated. In the present paper, we investigate the spatial and temporal expression pattern of five mechanically-responsive miRNAs in three regions of bent poplar woody taproot and unstressed controls by quantitative RT-PCR analysis. Alignment of the cloned and sequenced amplified fragments confirmed that their nucleotide sequences are homologous to the mechanically-responsive miRNAs identified in bent poplar stem. Computational analysis identified putative target genes for each miRNA in the poplar genome. Additional miRNA target sites were found in several mechanical stress-related factors previously identified in poplar root and a subset of these was further analyzed for expression at the mRNA or protein level. Integrating the results of miRNAs expression patterns and target gene functions with our previous morphological and proteomic data, we concluded that the five miRNAs play crucial regulatory roles in reaction woody formation and lateral root development in mechanically-stressed poplar taproot.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Raízes de Plantas/fisiologia , Populus/genética , Populus/fisiologia , Estresse Fisiológico/genética , Madeira/genética , Sequência de Bases , Fenômenos Biomecânicos/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , MicroRNAs/metabolismo , Dados de Sequência Molecular , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Populus/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Madeira/fisiologia
5.
Physiol Plant ; 150(2): 174-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23683290

RESUMO

Temperate perennial woody plants use different environmental signals to coordinate their growth and development in relation to seasonal changes. Preliminary evidences suggest that, even during dormancy, plants maintain effective metabolic activities and molecular mechanisms ensuring them an eventual recording of mechanical loads during winter times. Despite their great importance for productivity and survival, plant biology investigations have poorly characterized the root growth cycle and its response to environmental stresses. In this study, we describe the proteomic changes occurring over the time in poplar root either in the absence or in response to a bending stress; corresponding expression of cell cycle regulator and auxin transporter genes was also evaluated by reverse transcription polymerase chain reaction analysis. Our results confirm previous evidences on the effect of the bending stress on the anticipation of root growth resumption, providing additional insights on a temporal modulation of various plant metabolic processes involved in dormancy break, growth resumption and stress response in the bent root; these events seem related to the differential compression and tension force distribution occurring over the plant taproot.


Assuntos
Raízes de Plantas/fisiologia , Populus/fisiologia , Estresse Fisiológico , Madeira/fisiologia , Análise por Conglomerados , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Populus/genética , Proteômica , Estresse Fisiológico/genética , Fatores de Tempo , Madeira/genética
7.
Ann Bot ; 110(2): 415-32, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22437664

RESUMO

BACKGROUND AND AIMS: Morphological and biomechanical alterations occurring in woody roots of many plant species in response to mechanical stresses are well documented; however, little is known about the molecular mechanisms regulating these important alterations. The first forest tree genome to be decoded is that of Populus, thereby providing a tool with which to investigate the mechanisms controlling adaptation of woody roots to changing environments. The aim of this study was to use a proteomic approach to investigate the response of Populus nigra woody taproot to mechanical stress. METHODS: To simulate mechanical perturbations, the taproots of 30 one-year-old seedlings were bent to an angle of 90 ° using a steel net. A spatial and temporal two-dimensional proteome map of the taproot axis was obtained. We compared the events occurring in the above-bending, central bending and below-bending sectors of the taproot. KEY RESULTS: The first poplar woody taproot proteome map is reported here; a total of 207 proteins were identified. Spatial and temporal proteomic analysis revealed that factors involved in plant defence, metabolism, reaction wood formation and lateral root development were differentially expressed in the various sectors of bent vs. control roots, seemingly in relation to the distribution of mechanical forces along the stressed woody taproots. A complex interplay among different signal transduction pathways involving reactive oxygen species appears to modulate these responses. CONCLUSIONS: Poplar woody root uses different temporal and spatial mechanisms to respond to mechanical stress. Long-term bending treatment seem to reinforce the defence machinery, thereby enabling the taproot to better overcome winter and to be ready to resume growth earlier than controls.


Assuntos
Proteínas de Plantas/isolamento & purificação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Populus/crescimento & desenvolvimento , Populus/genética , Estresse Mecânico , Adaptação Fisiológica , Mapeamento Cromossômico , Interação Gene-Ambiente , Raízes de Plantas/metabolismo , Populus/metabolismo , Proteômica , Análise Espaço-Temporal
8.
Genome ; 55(9): 691-5, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23004341

RESUMO

Loop-mediated isothermal DNA amplification (LAMP) is an alternative method for the amplification of DNA sequences. It has been applied primarily for the detection of specific targets. We demonstrate the novel use of LAMP to amplify SSR alleles in a set of rice varieties and show the results to be consistent with analysis performed by PCR. Furthermore, we test the sensitivity of the assay and show it to amplify from near single copy target.


Assuntos
Repetições de Microssatélites , Técnicas de Amplificação de Ácido Nucleico/métodos , Oryza/genética , Primers do DNA/genética , DNA de Plantas/genética , Técnicas de Genotipagem , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Análise de Sequência de DNA
9.
Physiol Plant ; 146(1): 39-52, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22339039

RESUMO

Mechanical stress is a widespread condition caused by numerous environmental factors that severely affect plant stability. In response to mechanical stress, plants have evolved complex response pathways able to detect mechanical perturbations and inducing a suite of modifications in order to improve anchorage. The response of woody roots to mechanical stresses has been studied mainly at the morphological and biomechanical level, whereas investigations on the factors triggering these important alterations are still at the initial stage. Populus has been widely used to study the response of stem to different mechanical stresses and, since it has the first forest tree genome to be decoded, represents a model woody plant for addressing questions on the mechanisms controlling adaptation of woody roots to changing environments. In this study, a morphological and physiological analysis was used to investigate factors controlling modifications in Populus nigra woody taproots subjected to mechanical stress. An experimental model analyzing spatial and temporal mechanical force distribution along the woody taproot axis enabled us to compare the events occurring in its above-, central- and below-bending sectors. Different morphogenetic responses and local variations of lignin and plant hormones content have been observed, and a relation with the distribution of the mechanical forces along the stressed woody taproots is hypothesized. We investigated the differences of the response to mechanical stress induction during the time; in this regard, we present data referring to the effect of mechanical stress on plant transition from its condition of winter dormancy to that of full vegetative activity.


Assuntos
Lignina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Populus/fisiologia , Estresse Fisiológico/fisiologia , Adaptação Fisiológica , Raízes de Plantas/metabolismo , Estresse Mecânico
10.
Cells ; 10(10)2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34685524

RESUMO

Mechanical stress in tree roots induces the production of reaction wood (RW) and the formation of new branch roots, both functioning to avoid anchorage failure and limb damage. The vascular cambium (VC) is the factor responsible for the onset of these responses as shown by their occurrence when all primary tissues and the root tips are removed. The data presented confirm that the VC is able to evaluate both the direction and magnitude of the mechanical forces experienced before coordinating the most fitting responses along the root axis whenever and wherever these are necessary. The coordination of these responses requires intense crosstalk between meristematic cells of the VC which may be very distant from the place where the mechanical stress is first detected. Signaling could be facilitated through plasmodesmata between meristematic cells. The mechanism of RW production also seems to be well conserved in the stem and this fact suggests that the VC could behave as a single structure spread along the plant body axis as a means to control the relationship between the plant and its environment. The observation that there are numerous morphological and functional similarities between different meristems and that some important regulatory mechanisms of meristem activity, such as homeostasis, are common to several meristems, supports the hypothesis that not only the VC but all apical, primary and secondary meristems present in the plant body behave as a single interconnected structure. We propose to name this structure "meristematic connectome" given the possibility that the sequence of meristems from root apex to shoot apex could represent a pluricellular network that facilitates long-distance signaling in the plant body. The possibility that the "meristematic connectome" could act as a single structure active in adjusting the plant body to its surrounding environment throughout the life of a plant is now proposed.


Assuntos
Câmbio/metabolismo , Meristema/citologia , Proteínas de Plantas/metabolismo , Conectoma/métodos , Meio Ambiente , Plantas
11.
Environ Sci Pollut Res Int ; 28(34): 47447-47462, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33895948

RESUMO

Amendments, such as biochar, compost, and iron grit, used in phytostabilization studies, showed positive effects on soil physico-chemical properties, plant growth, and the microbial community. However, assisted phytostabilization studies do not always focus on the rhizosphere area where soil, plants, and microorganisms are affected by the amendments and plants and microorganisms can also interact with each other. The aims of this study were to evaluate the effects of amendment application on the exudation of organic acids by Salix viminalis plant roots, as well as the effects of amendments and plant development on the soil CHNS contents and the microbial community activity and diversity, assessed by measuring enzyme activities and using Biolog EcoPlatesTM tests and next-generation sequencing analyses. The results of the mesocosm experiment showed that soil C, H, and N contents were increased by amendment application, especially biochar and compost, while the one of S decreased. Enzyme activities, microbial activity, and diversity were also increased by the addition of amendments, except iron grit alone. Finally, the quantity of organic acids exuded by roots were little affected by amendments, which could in part explain the reduced effect of plant development on soil chemical and microbiological parameters. In conclusion, this study showed in particular that biochar and compost were beneficial for the soil CHN contents and the microbial community while affecting poorly Salix viminalis root exudates.


Assuntos
Compostagem , Salix , Poluentes do Solo , Biodegradação Ambiental , Carvão Vegetal , Ferro , Rizosfera , Solo , Poluentes do Solo/análise
12.
Environ Sci Pollut Res Int ; 28(9): 11195-11204, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33111230

RESUMO

Phytomanagement manipulates the soil-plant system to lower the risk posed by contaminated soils. In this process, the addition of amendments, such as biochar, and bacteria can improve the fertility of poor contaminated soils and consequently ameliorate plant growth. A number of studies based on the inoculation of soil with microorganisms of the genus Bacillus, previously isolated from contaminated sites, revealed positive effects on soil properties and plant growth. Furthermore, when the Bacillus isolates were used in association with biochar, better results were obtained, as biochar can ameliorate soil properties and serve as habitat for microorganisms. Accordingly, a mesocosm study was set-up using a mining technosol amended with biochar and inoculated with an endogenous Bacillus isolate, to evaluate the effect of inoculation on soil properties, metal(loid) immobilization, and Salix viminalis growth. Two inoculation methods were compared: (1) direct inoculation of bacteria (Bacillus sp.) and (2) inoculation using biochar as a carrier. Results showed that the Bacillus isolate modified soil properties and ameliorated plant growth, while having a reduced effect on metal(loid) accumulation. The microbial activity was also stimulated, and the community composition was shifted, more importantly when biochar was used as a carrier. In conclusion, this research revealed an improvement of the plant growth and microbial activity after the addition of the endogenous bacterium to the analyzed former mining soil, with better results recorded when a carrier was used.


Assuntos
Bacillus , Salix , Poluentes do Solo , Carvão Vegetal , Chumbo , Solo , Microbiologia do Solo , Poluentes do Solo/análise
13.
Sci Total Environ ; 707: 135657, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31784149

RESUMO

Phytomanagement of metal(loid) contaminated soils is an important study of research nowadays. However, such process often requires the application of amendments, i.e. biochar, to improve soil condition and thus permit plant establishment and growth. However, biochar properties and effects on the soil and plants depend on several parameters, for example: feedstock type, particle size, pyrolysis conditions, and application rate. The aim of this study was to assess which tissue from the oak trunk (bark, sapwood, heartwood) was responsible for the positive effects observed in previous studies on biochars derived from wood. A mesocosm experiment was thus set up using a former mine soil, amended or not, using 2% biochars produced from three oak tissues (bark, sapwood, heartwood) and with three particle sizes (0.2-0.4 mm, 0.5-1 mm, 1-2.5 mm). Phaseolus vulgaris plants were used as indicators of toxicity, and were grown for 14 days. Results of soil pore water (SPW) physico-chemical parameters, and plant growth and metal(loid) (As and Pb) accumulation showed a highly significant feedstock effect but no particle size effect. Among the three feedstocks, bark biochars induced greater improvements in the different SPW parameters whereas it was the only tissue increasing plant growth. Therefore, bark seems to be the best trunk part to produce a biochar that will immobilize mainly Pb compared to As.


Assuntos
Carvão Vegetal , Arsênio , Chumbo , Solo , Poluentes do Solo
14.
Chemosphere ; 244: 125397, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31812046

RESUMO

There is currently a large amount of research being done into the phytoremediation of polluted soils. Plant installation in contaminated soils may require the application of soil amendments, such as biochar, compost and/or iron grit, which can improve the soil conditions and reduce the metal (loid) phytoavailability and mobility. The beneficial effects of these amendments on soil properties, plant growth and metal (loid) accumulation ability have already been described, although their effect on the plants response machinery has been poorly studied. This study aimed to assess the effect of these amendments on Salix viminalis growth and metal (loid) accumulation, as well as elucidating associated molecular mechanisms. The results showed that the amendment applications improved plant growth by three fold, except for the biochar plus iron combination. It also revealed that metal (loid)s were not effectively translocated from the roots to the shoots (translocation factors <1), their bioaccumulation peaked in the roots, and increased in the presence of iron-based amendments. Corresponding proteomic profiles revealed 34 protein spots differentially represented and suggested that plants counteracted metal (loid)-induced oxidative stress after the addition of biochar and/or compost by eliciting proper defense and signaling pathways, and by redirecting the metabolic fluxes towards primary and secondary metabolism. However, they did highlight the occurrence of oxidative stress markers when the biochar plus iron amendment was applied, which could be both the cause and result of protein degradation impairment.


Assuntos
Arsênio/química , Recuperação e Remediação Ambiental/métodos , Chumbo/química , Salix/fisiologia , Poluentes do Solo/química , Arsênio/análise , Biodegradação Ambiental , Carvão Vegetal , Compostagem , Ferro , Chumbo/análise , Metais Pesados/análise , Proteoma , Proteômica , Solo , Poluentes do Solo/análise
15.
Sci Total Environ ; 710: 136203, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31926409

RESUMO

Metal(loid) accumulation in soils, is of increasing concern because of the potential human health risks. Therefore, metal(loid) contaminated sites need rehabilitation. It is becoming increasingly popular to use phytoremediation methods for the reclamation of sites containing metal(loid)s. However, plant establishment and growth on contaminated soils can be difficult due to high metal(loid) concentrations and poor fertility conditions. Consequently, amendments, like biochar and iron sulphate, must be applied. Biochar, obtained from plant biomass or animal wastes pyrolyzed under minimal oxygen supply, showed beneficial effects on soil properties and plant growth. Iron sulphate can effectively immobilize anions, thus mitigating metal(loid) toxicity and hence promoting plant development. This study aimed to assess the effect of two different modalities of biochar amendment application (top third of the tube and all tube height) combined with iron sulphate addition on the physico-chemical properties of a mining polluted soil and the growth and metal(loid) uptake of three Salicaceae species. A 1.5 year mesocosm experiment under field condition was conducted using a former tin mine contaminated by arsenic, amended with biochar and iron sulphate and vegetated with three Salicaceae species. Results showed that the combination of biochar and iron sulphate improved soil characteristics by increasing pH and electrical conductivity and reducing soil pore water metal(loid) concentrations. Between the two biochar application methods, the addition of biochar on the all tube height showed better results. But for such contaminated soil, biochar, in combination with iron sulphate, had no positive effect on plant growth, for all species tested and especially when incorporating on the top third of the tube. Finally, S. purpurea presented high root metal(loid) concentrations associated to the better growth compared to P. euramericana and S. viminalis, making it a better candidate for phytostabilization of the studied soil.


Assuntos
Salicaceae , Biodegradação Ambiental , Carvão Vegetal , Ferro , Solo , Poluentes do Solo , Sulfatos
16.
Front Plant Sci ; 11: 590985, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363556

RESUMO

Reaction wood (RW) formation is an innate physiological response of woody plants to counteract mechanical constraints in nature, reinforce structure and redirect growth toward the vertical direction. Differences and/or similarities between stem and root response to mechanical constraints remain almost unknown especially in relation to phytohormones distribution and RW characteristics. Thus, Populus nigra stem and root subjected to static non-destructive mid-term bending treatment were analyzed. The distribution of tension and compression forces was firstly modeled along the main bent stem and root axis; then, anatomical features, chemical composition, and a complete auxin and cytokinin metabolite profiles of the stretched convex and compressed concave side of three different bent stem and root sectors were analyzed. The results showed that in bent stems RW was produced on the upper stretched convex side whereas in bent roots it was produced on the lower compressed concave side. Anatomical features and chemical analysis showed that bent stem RW was characterized by a low number of vessel, poor lignification, and high carbohydrate, and thus gelatinous layer in fiber cell wall. Conversely, in bent root, RW was characterized by high vessel number and area, without any significant variation in carbohydrate and lignin content. An antagonistic interaction of auxins and different cytokinin forms/conjugates seems to regulate critical aspects of RW formation/development in stem and root to facilitate upward/downward organ bending. The observed differences between the response stem and root to bending highlight how hormonal signaling is highly organ-dependent.

17.
Front Plant Sci ; 10: 947, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417581

RESUMO

We excavated the root systems of Pinus ponderosa trees growing on a steeply sloped, volcanic ash-influenced soil in the northern Rocky Mountains of the United States to assess their functional coarse-root traits and root system architecture. Trees, outplanted as one-year-old seedlings from a container nursery, were in their 32nd growing season on the site. We found that the trees had deployed more roots, in terms of length and volume, in the downslope and windward quadrants than in their upslope and leeward quadrants, likely a response to mechanical forces toward improving stability. Moreover, we observed the development of three types of root cages (tight, enlarged, and diffused) that likely reflect micro-site characteristics. As the cage type transitioned from tight to enlarged to diffused we measured a decrease in the overall volume of the roots associated with the cage and the taproot becoming a more prominent contributor to the overall volume of the cage. Finally, we noted the development of specialty roots, namely those with I-beam and T-beam shapes in cross section, in the downslope quadrant; these types of roots are known to better counteract compression mechanical forces. These observations improve our understanding of root plasticity and tree rooting response to environmental stimuli, which is becoming an increasingly critical topic as changes in climate increase the frequency and intensity of storms.

18.
Chemosphere ; 222: 810-822, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30739065

RESUMO

Soil pollution by metal(loid)s is one of the most significant problems in Europe. To remediate and potentially rehabilitate these contaminated sites, phytoremediation procedures are being put into place, often using amendments to help offset the extreme conditions of such soils. The aim of this study was to define the best amendment to use on the field. This was done by studying how the addition of three different amendments (biochar, compost and iron grit), alone or in combination, could affect: (i) soil physico-chemical properties, (ii) Salix viminalis growth, and (iii) metal(loid) stabilization. A 69 day-mesocosm study was thus set up using a former mine technosol, the three amendments applied alone or combined, and S. viminalis cuttings. The results showed that biochar and/or compost improved the soil fertility and the soil pore water characteristics, with reductions of acidity, metal(loid) mobility and toxicity, while iron grit amendment presented negative effects on such parameters. Such ameliorations allowed better plant growth and higher biomass production. In addition, stress indicators (leaf pigment content and root guaiacol peroxidase activity) showed a reduction in plant stress following biochar and/or compost application. Finally, among the different treatments, the use of compost or a biochar-compost combination showed better results in terms of improvement of soil conditions, increase in plant growth and reduced translocation of metal(loid)s towards upper parts, making these two treatments a valuable option for a field trial.


Assuntos
Biodegradação Ambiental , Carvão Vegetal/farmacologia , Metais/análise , Salix/crescimento & desenvolvimento , Solo/normas , Arsênio/análise , Biomassa , Compostagem , Europa (Continente) , Ferro , Chumbo/análise , Salix/efeitos dos fármacos , Solo/química , Poluentes do Solo/análise
19.
Environ Sci Pollut Res Int ; 25(33): 33678-33690, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30276689

RESUMO

Biochar, produced by the pyrolysis of biomass under low oxygen conditions, has gathered attention in the last few years due to its capability to reduce metal(loid)s bioavailability and mobility in soils, as well as its beneficial effects on soil fertility. Indeed, biochar amendment to polluted soil induced usually an increase of pH, water holding capacity, and nutrient contents, associated with a decrease of metal(loid)s concentrations in soil pore water, through sorption. However, biochar has been shown efficient in sorbing cation pollutants, like Pb, but present a low sorption capacity towards anions like As. This contrasted behavior poses a problem, as most polluted soils are multi-contaminated, with both cation and anion pollutants. One of the solutions to overcome such problem is to functionalize biochar, by modifying its surface. However, most studies actually focused on functionalization effect on metal(loid)s sorption towards batch experiments, and only a few dealt with modified biochar incorporation to the soil. Therefore, this study aimed (i) to assess the sorption capacity of hardwood biochars, harboring different particle sizes, towards Pb and As; (ii) to evaluate the effect of a Fe-functionalization on Pb and As sorption; and (iii) to validate the results, in a phytotoxicity test using Phaseolus vulgaris as bioindicator plant. The batch experiments showed that all four biochars were able to efficiently sorb Pb, the fine biochars showing higher sorption values than the coarse biochars. As sorption was very low. Fe-coating increased As sorption value, while having no effect on Pb sorption. However, when incorporated in the soil, Fe-coated biochar did not improve soil physico-chemical properties compared to the pristine biochar; especially, it did not reduce As soil pore water concentrations. Finally, bean plant did not show differences in terms of biomass production between the two biochars incorporated into polluted soil, demonstrating that Fe-functionalization did not improve biochar capacity to decrease soil toxicity.


Assuntos
Arsênio/química , Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Chumbo/química , Poluentes do Solo/toxicidade , Arsênio/farmacocinética , Arsênio/toxicidade , Biomassa , Concentração de Íons de Hidrogênio , Ferro , Chumbo/farmacocinética , Chumbo/toxicidade , Tamanho da Partícula , Phaseolus/efeitos dos fármacos , Solo/química , Poluentes do Solo/química , Poluentes do Solo/farmacocinética , Testes de Toxicidade/métodos
20.
Chemosphere ; 194: 316-326, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29220748

RESUMO

Soil contamination by metal(loid)s is one of the most important environmental problem. It leads to loss of environment biodiversity and soil functions and can have harmful effects on human health. Therefore, contaminated soils could be remediated, using phytoremediation. Indeed, plant growth will improve soil conditions while accumulating metal(loid)s and modifying their mobility. However, due to the poor fertility and high metal(loid)s levels of these soils, amendments, like biochar, has to be applied. This study was performed on a former mine technosol contaminated by As and Pb and aimed to study (i) the effect of biochar on soil physico-chemical properties and plant phytostabilization potential (ii) biochar feedstock and particle size effects. In this goal, a mesocosm experiment was set up using four different biochars, obtained from two feedstocks (lightwood and pinewood) and harboring two particle sizes (inf. 0.1 mm and 0.2-0.4 mm) and two Salicaceae species. Soil and soil pore water physico-chemical properties as well as plant growth and metal(loid)s distribution were assessed. The results showed that biochar was efficient in improving soil physico-chemical properties and reducing Pb soil pore water concentrations. This amelioration allowed plant growth and increased dry weight production of both species. Regarding metal(loid)s distribution, willow and poplar showed an As and Pb accumulation in roots and low translocation towards edible parts, i.e stems and leaves, which shows a phytostabilization potential. Finally, the 2 biochar parameters, feedstock and particle size, only affected soil and soil pore water physico-chemical properties while having no effect on plant growth.


Assuntos
Arsênio/metabolismo , Carvão Vegetal/química , Chumbo/metabolismo , Populus/metabolismo , Salicaceae/metabolismo , Salix/metabolismo , Arsênio/farmacocinética , Biodegradação Ambiental , Chumbo/farmacocinética , Mineração , Tamanho da Partícula , Populus/crescimento & desenvolvimento , Solo/química , Poluentes do Solo/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA