Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Langmuir ; 37(34): 10354-10365, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34461725

RESUMO

Fine control of nanoparticle clustering within polymeric matrices can be tuned to enhance the physicochemical properties of the resulting composites, which are governed by the interplay of nanoparticle surface segregation and bulk clustering. To this aim, out-of-equilibrium strategies can be leveraged to program the multiscale organization of such systems. Here, we present experimental results indicating that bulk assembly of highly photoactive clusters of titanium dioxide nanoparticles within an in situ synthesized polysiloxane matrix can be thermally tuned. Remarkably, the controlled nanoparticle clustering results in improved degradation photocatalytic performances of the material under 1 sun toward methylene blue. The resulting coatings, in particular the 35 wt % TiO2-loaded composites, show a photocatalytic degradation of about 80%, which was comparable to the equivalent amount of bare TiO2 and two-fold higher with respect to the corresponding composites not subjected to thermal treatment. These findings highlight the role of thermally induced bulk clustering in enhancing photoactive nanoparticle/polymer composite properties.

2.
Phys Chem Chem Phys ; 22(16): 8344-8352, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32259171

RESUMO

In this paper, we developed different three-component organic heterojunction structures supported by PET/ITO substrates with the aim to study the possible synergies and/or compromises between charge transfer (CT) and energy transfer (ET) processes in organic solar cells (OSCs). As components, we employed poly(3-hexylthiophene-2,5-diyl) (P3HT; donor), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM; acceptor) and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) that is known to give good ET to P3HT. At first, we observed that in a planar heterojunction (PHJ) solar cell, F8BT has to be properly located in between P3HT and PCBM to get a cascade energy level configuration allowing for a better CT and power conversion efficiency. Then, we observed that by producing a P3HT:F8BT blend, the energy transfer process can be improved in the P3HT:F8BT/PCBM active layer. This may enable decreasing the thickness of the active layer while maintaining a similar PCE that is very interesting for the development of transparent OSCs. However, the P3HT:F8BT blend limits the P3HT-PCBM CT with respect to a P3HT/F8BT/PCBM PHJ, showing that a compromise between CT and ET is needed to get a higher PCE or higher transparency. By the above approach, in this paper, we developed highly transparent heterojunction structures for solar cell devices with PCEs comparable to those observed from the colorful reference P3HT/PCBM PHJ solar cells on PET/ITO substrates.

3.
J Photochem Photobiol B ; 250: 112818, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041931

RESUMO

The widespread abuse of traditional antibiotics has led to a global rise in antibiotic-resistant bacteria, which give in return unprecedented health risks. Therefore, there is a large and urgent need for the development of new, smart antibacterial agents able to efficiently kill or inhibit bacterial growth. In this study, we investigated the antibacterial activity of S, N-doped Graphene Quantum Dots (GQDs) as a light-triggered antibacterial agent. Gamma irradiation was employed as a tool to achieve one-step modification of GQDs in the presence of L-cysteine amino acid as a source of heteroatoms. X-ray Photoelectron Spectroscopy (XPS), nuclear magnetic resonance (NMR), and zeta potential measurements provided the necessary data to clarify the structure of modified dots and verify the introduction of both S- and N-atoms in GQDs structure, but also severe changes in the aromatic, sp2 domains. Namely, γ-irradiation caused a bonding of S atoms in 1.14 at.% mainly as thiol groups, and N in 1.81 at.% as amino groups, but sp2 contribution in GQD structure was lowered from 63.00 to 4.86 at.%, as measured in dots irradiated at a dose of 200 kGy. Fluorescence quenching measurements showed that L-cysteine-modified dots are able to bind to human serum albumin. The antibacterial activity of GQDs combined with 1 and 6 h of blue light (470 nm) irradiation was tested against 8 bacterial strains. GQD-cys-25 sample provided the best results, with minimum inhibitory concentration (MIC) as low as 125 µg/mL against S. aureus, E. faecalis, and E. coli after only 1 h of blue light exposure.


Assuntos
Grafite , Pontos Quânticos , Humanos , Pontos Quânticos/química , Grafite/farmacologia , Grafite/química , Cisteína , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia
4.
ACS Appl Eng Mater ; 1(5): 1384-1396, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37256019

RESUMO

The design of multifunctional nanostructured materials is the key to the development of smart wearable devices. For instance, nanostructures endowed with both piezoelectric and photocatalytic activities could well be the workhorse for solar-light-driven self-cleaning wearable sensors. In this work, a simple strategy for the assembly of a flexible, semitransparent piezophotocatalytic system is demonstrated by leveraging rational wet chemistry synthesis of ZnO-based nanosheets/nanoflowers (NSs/NFs) under basic pH conditions onto flexible ITO/PET supports. A KMnO4 pretreatment before the ZnO synthesis (seeded ZnO) allows for the control of the density, size, and orientation of the NSs/NFs systems compared to the systems produced in the absence of seeding (seedless ZnO). The electrical response of the sensors is extracted at a 1 V bias as a function of bending in the interval between 0 and 90°, being the responsivity toward bending significantly enhanced by the KMnO4 treatment effect. The photocatalytic activity of the sensors is analyzed in aqueous solution (methylene blue, 25 µM) by a solar simulator, resulting in similar values between seedless and seeded ZnO. Upon bending the sensor, the photocatalytic activity of seedless ZnO is almost unaffected, whereas that of seeded ZnO is improved by about 25%. The sensor's reusability and repeatability are tested in up to three different cycles. These results open up the way toward the seamless integration of bending sensitivity and photocatalysis into a single device.

5.
Nanomaterials (Basel) ; 12(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35808115

RESUMO

A polybutyleneadipate-co-butylenetherephthalate (PBAT) sample, commercially known as Ecoflex®, was processed via melt extrusion with CaCO3 nanoparticles coated with a hydrophobic coating. Blown films of PBAT and two composites with nanofiller (2% and 5%wt) were prepared and degradation tests in soil at 30 °C up to 180 days were carried out with weight loss measurements. Furthermore, biodegradation test according to ISO 14851 was carried out at 30 °C. The effect of CaCO3 on soil burial degradation was assessed by surface wettability and SEM. ATR-FTIR and XPS analyses highlighted chemical modifications induced by soil degradation. CaCO3 nanoparticles decreased surface wettability and discouraged the disintegration in soil. Interestingly, SEM images after soil degradation highlighted in the nanocomposite films selective zones of disintegration. XPS showed an increasing peak area C 1s ratio of C-O to C=O with degradation time. Moreover, after the soil burial test, carbonyl index determined by ATR-FTIR increased in both nanocomposites. In fact, the addition of CaCO3 leads to a rise in the carbonyl zone due to the presence of the carbonate group. Remarkably, FTIR data after soil degradation showed an enrichment of the aromatic content, a preferential cleavage and erosion of the aliphatic moiety in PBAT films, amplified by the presence of the CaCO3 nanofiller.

6.
J Colloid Interface Sci ; 610: 347-358, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923272

RESUMO

The production of new cost-effective biocompatible sorbent sustainable materials, with natural origins, able to remove heavy metals from water resources is nowadays highly desirable in order to reduce pollution and increase clean water availability. In this context, self-assembled protein materials with amyloid structures seem to have a great potential as natural platform for a broader development of highly-tunable structures. In this work we show how protein particulates, a generic form of protein aggregates, with spherical micro sized shape can be used as adsorbents of Pb2+ ions from aqueous solution. The effect of pH, ionic medium, ionic strength and temperature of the metal ion solution on the adsorption ability and affinity has been evaluated revealing the complexity of adsorption mechanisms which are the result of the balance of specific interactions with functional groups in protein structure and not specific ones common to all polypeptide chains, and possibly related to amyloid state and to modification of particulates hydration layer.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Íons , Cinética , Temperatura , Água , Poluentes Químicos da Água/análise
7.
Nanomaterials (Basel) ; 12(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35957147

RESUMO

Structural modification of different carbon-based nanomaterials is often necessary to improve their morphology and optical properties, particularly the incorporation of N-atoms in graphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method for N-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presence of the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N was detected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL). Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots, to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated as a PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was 5.4 µmol L-1 for Carbofuran. For the first time, Amitrole was detected by GQDs in a turn-off/turn-on mechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PL of GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration (turn-on). LOD was 2.03 µmol L-1. These results suggest that modified GQDs can be used as an efficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dots was investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cells were exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, the toxic effects were not observed.

8.
Invest New Drugs ; 29(2): 285-99, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20012338

RESUMO

Dibutyltin(IV) complexes of composition Bu2Sn(LH)2, where LH is a carboxylate residue derived from 2-[(E)-(5-tert-butyl-2-hydroxyphenyl)diazenyl]benzoate (L¹H) with water molecule (1), 4-[(E)-(5-tert-butyl-2-hydroxyphenyl)diazenyl]benzoate (L²H) (2) and 4-[(E)-(4-hydroxy-5-methylphenyl)diazenyl]benzoate (L³H) (3), were synthesized and characterized by spectroscopic (¹H, ¹³C and ¹¹9Sn NMR, IR, ¹¹9Sn Mössbauer) techniques. A full characterization was accomplished from the crystal structure of complex 1. The molecular structures and geometries of the complexes (1a i.e. 1 without water molecule and 3) were fully optimized using the quantum mechanical method (PM6). Complexes 1 and 3 were found to exhibit stronger cytotoxic activity in vitro across a panel of human tumor cell lines viz., A498, EVSA-T, H226, IGROV, M19 MEL, MCF-7 and WIDR. Compound 3 is found to be four times superior for the A498, EVSA-T and MCF-7 cell lines than CCDP (cisplatin), and four, eight and sixteen times superior for the A498, H226 and MCF-7 cell lines, respectively, compared to ETO (etoposide). The mechanistic role of cytotoxic activity of test compounds is discussed in relation to the theoretical results of docking studies with some key enzymes such as ribonucleotide reductase, thymidylate synthase, thymidylate phosphorylase and topoisomerase II associated with the propagation of cancer.


Assuntos
Enzimas/metabolismo , Compostos Orgânicos de Estanho/química , Compostos Orgânicos de Estanho/farmacologia , Sítios de Ligação , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cristalografia por Raios X , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligação de Hidrogênio/efeitos dos fármacos , Ligantes , Modelos Moleculares , Conformação Molecular , Compostos Orgânicos de Estanho/metabolismo , Teoria Quântica , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Timidilato Sintase/química , Timidilato Sintase/metabolismo
9.
Invest New Drugs ; 28(5): 587-99, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19641849

RESUMO

Triphenyltin(IV) complexes of composition [Ph(3)SnL(1)H](n) (1) and [Ph(3)SnL(2)H](n) (2) (where L(1)H = 2-[(E)-2-(3-formyl-4-hydroxyphenyl)-1-diazenyl]benzoate and L(2)H = 2-[(E)-2-(4-Hydroxy-5-methylphenyl)-1-diazenyl]benzoate) were synthesized and characterized by spectroscopic ((1)H, (13)C and (119)Sn NMR, IR, (119)Sn Mössbauer) techniques in combination with elemental analysis. The molecular structures and geometries of the complexes (1 and 2) were fully optimized using the quantum mechanical method (PM3). Complexes (1 and 2) were found to exhibit stronger cytotoxic activity in vitro across a panel of human tumour cell lines viz., A498, EVSA-T, H226, IGROV, M19 MEL, MCF-7 and WIDR. The test compounds 1 and 2 exhibit comparable results and both the compounds are found to be far superior to CCDP (cisplatin), 5-FU (5-fluorouracil) and ETO (etoposide) across a panel of cell lines and the activity is more pronounced for the A498 (22 fold) and H226 (33 fold) cell lines compared to CCDP, and A498 (13 fold), H226 (39 fold) and MCF-7 (33 fold) cell lines compared to ETO. The test compounds are even 23 fold more active in magnitude in terms of the ID(50) value at least against the H226 cell lines when compared with MTX (methotrexate). Further, the mechanistic role of cytotoxic activity of test compounds (1 and 2), are discussed in relations to the theoretical results of docking studies with some of the key enzymes such as ribonucleotide reductase, thymidylate synthase, thymidylate phosphorylase and topoisomerase II.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Compostos Orgânicos de Estanho/síntese química , Compostos Orgânicos de Estanho/farmacologia , Ribonucleotídeo Redutases/metabolismo , Timidilato Sintase/metabolismo , Antineoplásicos/química , Sítios de Ligação , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Compostos Orgânicos de Estanho/química , Teoria Quântica , Ribonucleotídeo Redutases/química , Espectrofotometria Infravermelho , Termodinâmica , Timidilato Sintase/química
10.
Chempluschem ; 85(11): 2455-2464, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33021350

RESUMO

A novel bithiophene-fulleropyrrolidine bisadducts system (bis-Th2PC60 ) was synthesized and electropolymerized by chronoamperometry onto flexible ITO/PET substrates. The resulting semitransparent thin film was characterized by XPS, FT-IR, cyclic voltammetry and optical techniques, confirming the good outcome of the electropolymerization process. AFM investigations permitted to highlight an inherent disordered granular morphology, in which the grain-to-grain separation depends upon the application of bending. The electrical resistance of the thin film was characterized as a function of bending (in the range 0°-90°), showing promising responsivity to low bending angles (10°-30°). The ΔR/R0 variations turn out to be 8 %,16 % and 20 % for bending angles equal to 10°, 20° and 30°, respectively. This study represents a first step towards the understanding of piezoresistive properties in electropolymerized fullerenes-based thin films, opening up applications as bending sensor.

11.
ACS Biomater Sci Eng ; 6(5): 3174-3186, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33463257

RESUMO

Single-cell microarrays are emerging tools to unravel intrinsic diversity within complex cell populations, opening up new approaches for the in-depth understanding of highly relevant diseases. However, most of the current methods for their fabrication are based on cumbersome patterning approaches, employing organic solvents and/or expensive materials. Here, we demonstrate an unprecedented green-chemistry strategy to produce single-cell capture biochips onto glass surfaces by all-aqueous inkjet printing. At first, a chitosan film is easily inkjet printed and immobilized onto hydroxyl-rich glass surfaces by electrostatic immobilization. In turn, poly(ethylene glycol) diglycidyl ether is grafted on the chitosan film to expose reactive epoxy groups and induce antifouling properties. Subsequently, microscale collagen spots are printed onto the above surface to define the attachment area for single adherent human cancer cells harvesting with high yield. The reported inkjet printing approach enables one to modulate the collagen area available for cell attachment in order to control the number of captured cells per spot, from single-cells up to double- and multiple-cell arrays. Proof-of-principle of the approach includes pharmacological treatment of single-cells by the model drug doxorubicin. The herein presented strategy for single-cell array fabrication can constitute a first step toward an innovative and environmentally friendly generation of aqueous-based inkjet-printed cellular devices.


Assuntos
Vidro , Biopolímeros , Humanos , Análise em Microsséries
12.
Nonlinear Dynamics Psychol Life Sci ; 11(3): 293-308, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17572986

RESUMO

Does a persistent blockage of the ionic pumps bring cell membrane voltage to zero? This apparently trivial question of basic cellular Biology stirred up an intriguing problem of nonlinear dynamics. A 3-ion model based on continuity and charge conservation proves that membrane voltage actually sets on a negative value, meaning that chemical equilibrium is never reached, rather an inversion of the Na+ concentration gradient occurs, usually hours after the blockage of the pumps. Experimental tests carried out with PC12 cells incubated with Oubaine for a period of 24 hours show an increase of cytosolic Na+ of about 266 mM/l with respect to a control sample. The result is compatible with an inversion of the Na+ gradient, which eventually brings the membrane voltage to a negative value. Reactivation of the Na+-K+ pumps even after a prolonged period of blockage (late repolarization) should lead to repolarization and revival of the cell. In the 3D space of the ionic concentrations, the dynamics of passive depolarization reveals an intriguing topology, all trajectories being stacked in parallel planes, each set ending to a unique fixed point via an infinitely dense set of lines. The dynamics of repolarization has a different phase portrait, especially in the case of late repolarization. Thus, a sequence of depolarization- repolarization cycles may result in a path wandering in the phase space, or in a closed loop, depending on the timing of the sequence.

13.
ACS Appl Mater Interfaces ; 9(27): 23164-23174, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28603968

RESUMO

One of the main challenges to exploit molybdenum disulfide (MoS2) potentialities for the next-generation complementary metal oxide semiconductor (CMOS) technology is the realization of p-type or ambipolar field-effect transistors (FETs). Hole transport in MoS2 FETs is typically hampered by the high Schottky barrier height (SBH) for holes at source/drain contacts, due to the Fermi level pinning close to the conduction band. In this work, we show that the SBH of multilayer MoS2 surface can be tailored at nanoscale using soft O2 plasma treatments. The morphological, chemical, and electrical modifications of MoS2 surface under different plasma conditions were investigated by several microscopic and spectroscopic characterization techniques, including X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), conductive AFM (CAFM), aberration-corrected scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). Nanoscale current-voltage mapping by CAFM showed that the SBH maps can be conveniently tuned starting from a narrow SBH distribution (from 0.2 to 0.3 eV) in the case of pristine MoS2 to a broader distribution (from 0.2 to 0.8 eV) after 600 s O2 plasma treatment, which allows both electron and hole injection. This lateral inhomogeneity in the electrical properties was associated with variations of the incorporated oxygen concentration in the MoS2 multilayer surface, as shown by STEM/EELS analyses and confirmed by ab initio density functional theory (DFT) calculations. Back-gated multilayer MoS2 FETs, fabricated by self-aligned deposition of source/drain contacts in the O2 plasma functionalized areas, exhibit ambipolar current transport with on/off current ratio Ion/Ioff ≈ 103 and field-effect mobilities of 11.5 and 7.2 cm2 V-1 s-1 for electrons and holes, respectively. The electrical behavior of these novel ambipolar devices is discussed in terms of the peculiar current injection mechanisms in the O2 plasma functionalized MoS2 surface.

14.
J Inorg Biochem ; 168: 76-89, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28024187

RESUMO

Five new organotin(IV) complexes of compositions [Me2SnL1] (1), [Me2SnL2]n (2), [Me2SnL3] (3), [Ph3SnL1H]n (4) and [Ph3SnL3H] (5) (where L1=(2S)-2-((E)-((Z)-4-hydroxypent-3-en-2-ylidene)amino)-3-(1H-indol-3-yl)propanoate, L2=(2S)-(E)-2-((2-hydroxybenzylidene)amino)-3-(1H-indol-3-yl)propanoate and L3=(2S)-(E)-2-((1-(2-hydroxyphenyl)ethylidene)amino)-3-(1H-indol-3-yl)propanoate were synthesized and spectroscopically characterized. The crystal structures of 1-4 were determined. For the dimethyltin derivative 2, a polymeric chain structure was observed as a result of a long Sn∙∙∙O contact involving the exocyclic carbonyl oxygen-atom from the tridentate ligand of a neighboring Sn-complex unit. The tin atom in this complex has a distorted octahedral coordination geometry, in which the long Sn-O bond is almost trans to the tridentate ligand nitrogen-atom. In contrast, the dimethyltin(IV) complexes 1 and 3 displayed discrete monomeric structures where the tin atom has distorted trigonal-bipyramidal geometry with the two coordinating L oxygen atoms defining the axial positions. On the other hand, 4 is a chain polymer in the solid state. The ligand-bridged Sn atoms adopt a trans-Ph3SnO2 trigonal-bipyramidal configuration with equatorial phenyl groups. A carboxylato oxygen atom from one and the hydroxyl oxygen of the successive ligand in the chain occupy the axial positions. The solution structures were predicted by the use of 119Sn NMR chemical shifts. The photophysical properties of the complexes were investigated in the solid and in solution. The triphenyltin(IV) compound 4 was tested in detail ex vivo against A375 (human melanoma) cell line, exhibiting an IC50 value of 261nM to induce cell death as assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay without significant alteration of cytolysis as determined by lactate dehydrogenase (LDH) assay. Compound 4-mediated potent cell death was also determined by Live and Dead assay and caspase-mediated cleavage of poly-ADP ribose polymerase (PARP). Potent cell death activity was not observed in primary cells, like blood-derived peripheral mononuclear cells (PBMC). Compound 4 inhibited the diphenyl hexatriene (DPH) binding to cells and decreased the micro viscosity in a dose-dependent manner. Additionally, the ability of 4 and cyclodextrin (CD) to interact was determined by molecular modelling.


Assuntos
Aminoácidos Aromáticos/química , Compostos Orgânicos de Estanho/química , Compostos Orgânicos de Estanho/farmacologia , Processos Fotoquímicos , Bases de Schiff/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Simulação de Acoplamento Molecular , Compostos Orgânicos de Estanho/síntese química , Bases de Schiff/síntese química , Bases de Schiff/farmacologia , Estereoisomerismo
15.
J Inorg Biochem ; 125: 16-25, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23685346

RESUMO

Three new triorganotin(IV) complexes of valproic acid (vp1, Me3Sn-valproate; vp2, Bu3Sn-valproate; vp3, Ph3Sn-valproate) have been synthesized and investigated by spectroscopic and biological methods. An anionic, monodentate valproate ligand was observed, ester-like coordinating the tin atom on a tetra-coordinated, monomeric environment. The structures, though, can distort towards a penta-coordination, as a consequence of a long range O···Sn interaction. Crystallographic and NMR findings confirm this situation both in solid state and solution. Biological finding evidenced a clear cytotoxic action of the complexes in hepatocellular carcinoma cell cultures: one of the complexes induced an 80% cell viability reduction after 24h treatment in HepG2 cells. This effect was accompanied by the appearance of biochemical signs of apoptosis. In Chang liver cells, the same compound induced only modest effects, suggesting a potential use as anti-cancer drug. Preliminary evaluations on hyperacetylation state of histone H3 in tributyltin-valproate treated HepG2 cells showed an increase in Ac-H3 (histone H3 acetylated at lys-9 and lys-14), suggesting that the compound maintains the deacetylation inhibition activity of its ligand valproate.


Assuntos
Antineoplásicos/síntese química , Histonas/metabolismo , Compostos Orgânicos de Estanho/síntese química , Ácido Valproico/análogos & derivados , Ácido Valproico/química , Acetilação , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular , Células Cultivadas , Células Hep G2 , Histonas/química , Humanos , Compostos Orgânicos de Estanho/química , Compostos Orgânicos de Estanho/farmacologia , Ácido Valproico/síntese química , Ácido Valproico/farmacologia
16.
J Inorg Biochem ; 107(1): 119-28, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22182574

RESUMO

Four new triphenyltin(IV) complexes of composition Ph(3)SnLH (where LH=2-/4-[(E)-2-(aryl)-1-diazenyl]benzoate) (1-4) were synthesized and characterized by spectroscopic (((1))H, ((13))C and ((119))Sn NMR, IR, ((119))Sn Mössbauer) techniques in combination with elemental analysis. The ((119))Sn NMR spectroscopic data indicate a tetrahedral coordination geometry in non-coordinating solvents. The crystal structures of three complexes, Ph(3)SnL((1))H (1), Ph(3)SnL((3))H (3), Ph(3)SnL((4))H (4), were determined. All display an essentially tetrahedral geometry with angles ranging from 93.50(8) to 124.5(2)°; ((119))Sn Mössbauer spectral data support this assignment. The cytotoxicity studies were performed with complexes 1-4, along with a previously reported complex (5) in vitro across a panel of human tumor cell lines viz., A498, EVSA-T, H226, IGROV, M19 MEL, MCF-7 and WIDR. The screening results were compared with the results from other related triphenyltin(IV) complexes (6-7) and tributyltin(IV) complexes (8-11) having 2-/4-[(E)-2-(aryl)-1-diazenyl]benzoates framework. In general, the complexes exhibit stronger cytotoxic activity. The results obtained for 1-3 are also comparable to those of its o-analogs i.e. 4-7, except 5, but the advantage is the former set of complexes demonstrated two folds more cytotoxic activity for the cell line MCF-7 with ID(50) values in the range 41-53 ng/ml. Undoubtedly, the cytotoxic results of complexes 1-3 are far superior to CDDP, 5-FU and ETO, and related tributyltin(IV) complexes 8-11. The quantitative structure-activity relationship (QSAR) studies for the cytotoxicity of triphenyltin(IV) complexes 1-7 and tributyltin(IV) complexes 8-11 is also discussed against a panel of human tumor cell lines.


Assuntos
Antineoplásicos/farmacologia , Benzoatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Compostos Orgânicos de Estanho/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoatos/síntese química , Benzoatos/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Modelos Moleculares , Conformação Molecular , Compostos Orgânicos de Estanho/síntese química , Compostos Orgânicos de Estanho/química , Relação Quantitativa Estrutura-Atividade , Estereoisomerismo
17.
J Inorg Biochem ; 104(7): 750-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20421134

RESUMO

Diorganotin(IV) complexes of N-acetyl-L-cysteine (H(2)NAC; (R)-2-acetamido-3-sulfanylpropanoic acid) have been synthesized and their solid and solution-phase structural configurations investigated by FTIR, Mössbauer, (1)H, (13)C and (119)Sn NMR spectroscopy. FTIR results suggested that in R(2)Sn(IV)NAC (R = Me, Bu, Ph) complexes NAC(2-) behaves as dianionic tridentate ligand coordinating the tin(IV) atom, through ester-type carboxylate, acetate carbonyl oxygen atom and the deprotonated thiolate group. From (119)Sn Mössbauer spectroscopy it could be inferred that the tin atom is pentacoordinated, with equatorial R(2)Sn(IV) trigonal bipyramidal configuration. In DMSO-d(6) solution, NMR spectroscopic data showed the coordination of one solvent molecule to tin atom, while the coordination mode of the ligand through the ester-type carboxylate and the deprotonated thiolate group was retained in solution. DFT (Density Functional Theory) study confirmed the proposed structures in solution phase as well as the determination of the most probable stable ring conformation. Biological investigations showed that Bu(2)SnCl(2) and NAC2 induce loss of viability in HCC cells and only moderate effects in non-tumor Chang liver cells. NAC2 showed lower cytotoxic activity than Bu(2)SnCl(2), suggesting that the binding with NAC(2-) modulates the marked cytotoxic activity exerted by Bu(2)SnCl(2). Therefore, these novel butyl derivatives could represent a new class of anticancer drugs.


Assuntos
Acetilcisteína/química , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Compostos Orgânicos de Estanho/química , Antineoplásicos/síntese química , Sítios de Ligação , Linhagem Celular , Humanos , Estrutura Molecular , Compostos Orgânicos de Estanho/síntese química , Compostos Orgânicos de Estanho/farmacologia , Análise Espectral
18.
J Inorg Biochem ; 104(9): 950-66, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20553814

RESUMO

A series of tributyltin(IV) complexes based on 2/4-[(E)-2-(aryl)-1-diazenyl]benzoate ligands was synthesized, wherein the position of the carboxylate and aryl substituents (methyl, tert-butyl and hydroxyl) varies. The complexes, Bu(3)SnL(1-4)H (1-4), have been structurally characterized by elemental analysis and IR, NMR ((1)H, (13)C, and (119)Sn) and (119)Sn Mössbauer spectroscopy. All have a tetrahedral geometry in solution and a trigonal bipyramidal geometry in the solid-state, except for Bu(3)SnL(4)H (4) that was ascertained to have tetrahedral coordination by X-ray crystallography. Cytotoxicity studies were carried out on human tumor cell lines A498 (renal cancer), EVSA-T (mammary cancer), H226 (non-small-cell lung cancer), IGROV (ovarian cancer), M19 MEL (melanoma), MCF-7 (mammary cancer) and WIDR (colon cancer). Compared to cisplatin, test compounds 1-4 had remarkably good activity, despite the presence of substantial steric bulk due to Sn-Bu ligands. The quantitative structure-activity relationship (QSAR) studies for the cytotoxicity of organotin(IV) benzoates, along with some reference drug molecules, is also discussed against a panel of human tumor cell lines. Molecular structures of the tributyltin(IV) complexes (1-4) were fully optimized using the PM6 semi-empirical method and docking studies performed with key enzymes associated with the propagation of cancer, namely ribonucleotide reductase, thymidylate synthase, thymidylate phosphorylase and topoisomerase II. The theoretical results are discussed in relation to the mechanistic role of the cytotoxic active test compounds (1-4).


Assuntos
Antineoplásicos/química , Antineoplásicos/síntese química , Benzoatos/química , Compostos Orgânicos de Estanho/química , Compostos Orgânicos de Estanho/síntese química , Compostos de Trialquitina/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Compostos Orgânicos de Estanho/farmacologia , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA