RESUMO
Congenital diaphragmatic hernia (CDH) is a relatively common and genetically heterogeneous structural birth defect associated with high mortality and morbidity. We describe eight unrelated families with an X-linked condition characterized by diaphragm defects, variable anterior body-wall anomalies, and/or facial dysmorphism. Using linkage analysis and exome or genome sequencing, we found that missense variants in plastin 3 (PLS3), a gene encoding an actin bundling protein, co-segregate with disease in all families. Loss-of-function variants in PLS3 have been previously associated with X-linked osteoporosis (MIM: 300910), so we used in silico protein modeling and a mouse model to address these seemingly disparate clinical phenotypes. The missense variants in individuals with CDH are located within the actin-binding domains of the protein but are not predicted to affect protein structure, whereas the variants in individuals with osteoporosis are predicted to result in loss of function. A mouse knockin model of a variant identified in one of the CDH-affected families, c.1497G>C (p.Trp499Cys), shows partial perinatal lethality and recapitulates the key findings of the human phenotype, including diaphragm and abdominal-wall defects. Both the mouse model and one adult human male with a CDH-associated PLS3 variant were observed to have increased rather than decreased bone mineral density. Together, these clinical and functional data in humans and mice reveal that specific missense variants affecting the actin-binding domains of PLS3 might have a gain-of-function effect and cause a Mendelian congenital disorder.
Assuntos
Hérnias Diafragmáticas Congênitas , Osteoporose , Adulto , Humanos , Masculino , Animais , Camundongos , Hérnias Diafragmáticas Congênitas/genética , Actinas/genética , Mutação de Sentido Incorreto/genética , Osteoporose/genéticaRESUMO
Deletions of chromosome 1p36 are the most common telomeric deletions in humans and are associated with an increased risk of orofacial clefting. Deletion/phenotype mapping, combined with data from human and mouse studies, suggests the existence of multiple 1p36 genes associated with orofacial clefting including SKI, PRDM16, PAX7 and GRHL3. The arginine-glutamic acid dipeptide (RE) repeats gene (RERE) is located in the proximal critical region for 1p36 deletion syndrome and encodes a nuclear receptor co-regulator. Pathogenic RERE variants have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye or heart (NEDBEH). Cleft lip has previously been described in one individual with NEDBEH. Here we report the first individual with NEDBEH to have a cleft palate. We confirm that RERE is broadly expressed in the palate during mouse embryonic development, and we demonstrate that the majority of RERE-deficient mouse embryos on C57BL/6 background have cleft palate. We go on to show that ablation of Rere in cranial neural crest (CNC) cells, mediated by a Wnt1-Cre, leads to delayed elevation of the palatal shelves and cleft palate and that proliferation of mesenchymal cells in the palatal shelves is significantly reduced in Rereflox/flox; Wnt1-Cre embryos. We conclude that loss of RERE function contributes to the development of orofacial clefts in individuals with proximal 1p36 deletions and NEDBEH and that RERE expression in CNC cells and their derivatives is required for normal palatal development.
Assuntos
Transtornos Cromossômicos/genética , Fenda Labial/genética , Fissura Palatina/genética , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Proteínas do Tecido Nervoso/genética , Proteínas Repressoras/genética , Animais , Proliferação de Células/genética , Deleção Cromossômica , Transtornos Cromossômicos/metabolismo , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 1/metabolismo , Fenda Labial/embriologia , Fenda Labial/metabolismo , Fissura Palatina/embriologia , Fissura Palatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Crista Neural/embriologia , Crista Neural/metabolismo , Fenótipo , Proteínas Repressoras/deficiência , Proteína Wnt1/genética , Proteína Wnt1/metabolismoRESUMO
SWI/SNF-related intellectual disability disorders (SSRIDDs) are rare neurodevelopmental disorders characterized by developmental disability, coarse facial features, and fifth digit/nail hypoplasia that are caused by pathogenic variants in genes that encode for members of the SWI/SNF (or BAF) family of chromatin remodeling complexes. We have identified 12 individuals with rare variants (10 loss-of-function, 2 missense) in the BICRA (BRD4 interacting chromatin remodeling complex-associated protein) gene, also known as GLTSCR1, which encodes a subunit of the non-canonical BAF (ncBAF) complex. These individuals exhibited neurodevelopmental phenotypes that include developmental delay, intellectual disability, autism spectrum disorder, and behavioral abnormalities as well as dysmorphic features. Notably, the majority of individuals lack the fifth digit/nail hypoplasia phenotype, a hallmark of most SSRIDDs. To confirm the role of BICRA in the development of these phenotypes, we performed functional characterization of the zebrafish and Drosophila orthologs of BICRA. In zebrafish, a mutation of bicra that mimics one of the loss-of-function variants leads to craniofacial defects possibly akin to the dysmorphic facial features seen in individuals harboring putatively pathogenic BICRA variants. We further show that Bicra physically binds to other non-canonical ncBAF complex members, including the BRD9/7 ortholog, CG7154, and is the defining member of the ncBAF complex in flies. Like other SWI/SNF complex members, loss of Bicra function in flies acts as a dominant enhancer of position effect variegation but in a more context-specific manner. We conclude that haploinsufficiency of BICRA leads to a unique SSRIDD in humans whose phenotypes overlap with those previously reported.
Assuntos
Proteínas Cromossômicas não Histona/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto , Fenótipo , Proteínas Supressoras de Tumor/genética , Adolescente , Animais , Criança , Pré-Escolar , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Genes Dominantes , Variação Genética , Haploinsuficiência , Humanos , Lactente , Masculino , Microscopia Confocal , Neuroglia/metabolismo , Neurônios/metabolismo , Ligação Proteica , Peixe-Zebra , Proteínas de Peixe-Zebra/genéticaRESUMO
BACKGROUND: Congenital diaphragmatic hernia (CDH) is a life-threatening birth defect that often co-occurs with non-hernia-related anomalies (CDH+). While copy number variant (CNV) analysis is often employed as a diagnostic test for CDH+, clinical exome sequencing (ES) has not been universally adopted. METHODS: We analysed a clinical database of ~12 000 test results to determine the diagnostic yields of ES in CDH+ and to identify new phenotypic expansions. RESULTS: Among the 76 cases with an indication of CDH+, a molecular diagnosis was made in 28 cases for a diagnostic yield of 37% (28/76). A provisional diagnosis was made in seven other cases (9%; 7/76). Four individuals had a diagnosis of Kabuki syndrome caused by frameshift variants in KMT2D. Putatively deleterious variants in ALG12 and EP300 were each found in two individuals, supporting their role in CDH development. We also identified individuals with de novo pathogenic variants in FOXP1 and SMARCA4, and compound heterozygous pathogenic variants in BRCA2. The role of these genes in CDH development is supported by the expression of their mouse homologs in the developing diaphragm, their high CDH-specific pathogenicity scores generated using a previously validated algorithm for genome-scale knowledge synthesis and previously published case reports. CONCLUSION: We conclude that ES should be ordered in cases of CDH+ when a specific diagnosis is not suspected and CNV analyses are negative. Our results also provide evidence in favour of phenotypic expansions involving CDH for genes associated with ALG12-congenital disorder of glycosylation, Rubinstein-Taybi syndrome, Fanconi anaemia, Coffin-Siris syndrome and FOXP1-related disorders.
Assuntos
Hérnias Diafragmáticas Congênitas , Animais , Variações do Número de Cópias de DNA/genética , DNA Helicases/genética , Exoma/genética , Fatores de Transcrição Forkhead/genética , Mutação da Fase de Leitura , Hérnias Diafragmáticas Congênitas/diagnóstico , Hérnias Diafragmáticas Congênitas/genética , Humanos , Camundongos , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Sequenciamento do ExomaRESUMO
PAX5 is a transcription factor associated with abnormal posterior midbrain and cerebellum development in mice. PAX5 is highly loss-of-function intolerant and missense constrained, and has been identified as a candidate gene for autism spectrum disorder (ASD). We describe 16 individuals from 12 families who carry deletions involving PAX5 and surrounding genes, de novo frameshift variants that are likely to trigger nonsense-mediated mRNA decay, a rare stop-gain variant, or missense variants that affect conserved amino acid residues. Four of these individuals were published previously but without detailed clinical descriptions. All these individuals have been diagnosed with one or more neurodevelopmental phenotypes including delayed developmental milestones (DD), intellectual disability (ID), and/or ASD. Seizures were documented in four individuals. No recurrent patterns of brain magnetic resonance imaging (MRI) findings, structural birth defects, or dysmorphic features were observed. Our findings suggest that PAX5 haploinsufficiency causes a neurodevelopmental disorder whose cardinal features include DD, variable ID, and/or ASD.
Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Transtorno do Espectro Autista/genética , Haploinsuficiência , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fator de Transcrição PAX5 , FenótipoRESUMO
PURPOSE: BRG1/BRM-associated factor (BAF) complex is a chromatin remodeling complex that plays a critical role in gene regulation. Defects in the genes encoding BAF subunits lead to BAFopathies, a group of neurodevelopmental disorders with extensive locus and phenotypic heterogeneity. METHODS: We retrospectively analyzed data from 16,243 patients referred for clinical exome sequencing (ES) with a focus on the BAF complex. We applied a genotype-first approach, combining predicted genic constraints to propose candidate BAFopathy genes. RESULTS: We identified 127 patients carrying pathogenic variants, likely pathogenic variants, or de novo variants of unknown clinical significance in 11 known BAFopathy genes. Those include 34 patients molecularly diagnosed using ES reanalysis with new gene-disease evidence (n = 21) or variant reclassifications in known BAFopathy genes (n = 13). We also identified de novo or predicted loss-of-function variants in 4 candidate BAFopathy genes, including ACTL6A, BICRA (implicated in Coffin-Siris syndrome during this study), PBRM1, and SMARCC1. CONCLUSION: We report the mutational spectrum of BAFopathies in an ES cohort. A genotype-driven and pathway-based reanalysis of ES data identified new evidence for candidate genes involved in BAFopathies. Further mechanistic and phenotypic characterization of additional patients are warranted to confirm their roles in human disease and to delineate their associated phenotypic spectrums.
Assuntos
Anormalidades Múltiplas , Deformidades Congênitas da Mão , Micrognatismo , Anormalidades Múltiplas/genética , Actinas/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Exoma/genética , Deformidades Congênitas da Mão/genética , Humanos , Micrognatismo/genética , Estudos RetrospectivosRESUMO
PURPOSE: We sought to delineate the genotypic and phenotypic spectrum of female and male individuals with X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). METHODS: Twenty-five individuals (15 males, 10 females) with causative variants in MSL3 were ascertained through exome or genome sequencing at ten different sequencing centers. RESULTS: We identified multiple variant types in MSL3 (ten nonsense, six frameshift, four splice site, three missense, one in-frame-deletion, one multi-exon deletion), most proven to be de novo, and clustering in the terminal eight exons suggesting that truncating variants in the first five exons might be compensated by an alternative MSL3 transcript. Three-dimensional modeling of missense and splice variants indicated that these have a deleterious effect. The main clinical findings comprised developmental delay and intellectual disability ranging from mild to severe. Autism spectrum disorder, muscle tone abnormalities, and macrocephaly were common as well as hearing impairment and gastrointestinal problems. Hypoplasia of the cerebellar vermis emerged as a consistent magnetic resonance image (MRI) finding. Females and males were equally affected. Using facial analysis technology, a recognizable facial gestalt was determined. CONCLUSION: Our aggregated data illustrate the genotypic and phenotypic spectrum of X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Our cohort improves the understanding of disease related morbidity and allows us to propose detailed surveillance guidelines for affected individuals.
Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtorno do Espectro Autista/genética , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA , Feminino , Genes Ligados ao Cromossomo X , Genótipo , Humanos , Deficiência Intelectual/genética , Masculino , Fenótipo , Sequenciamento do ExomaRESUMO
The bromodomain adjacent to zinc finger 2B gene (BAZ2B) encodes a protein involved in chromatin remodeling. Loss of BAZ2B function has been postulated to cause neurodevelopmental disorders. To determine whether BAZ2B deficiency is likely to contribute to the pathogenesis of these disorders, we performed bioinformatics analyses that demonstrated a high level of functional convergence during fetal cortical development between BAZ2B and genes known to cause autism spectrum disorder (ASD) and neurodevelopmental disorder. We also found an excess of de novo BAZ2B loss-of-function variants in exome sequencing data from previously published cohorts of individuals with neurodevelopmental disorders. We subsequently identified seven additional individuals with heterozygous deletions, stop-gain, or de novo missense variants affecting BAZ2B. All of these individuals have developmental delay (DD), intellectual disability (ID), and/or ASD. Taken together, our findings suggest that haploinsufficiency of BAZ2B causes a neurodevelopmental disorder, whose cardinal features include DD, ID, and ASD.
Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Haploinsuficiência , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fatores Genéricos de Transcrição/genética , Alelos , Substituição de Aminoácidos , Transtorno do Espectro Autista/diagnóstico , Expressão Gênica , Estudos de Associação Genética , Genótipo , Humanos , Deficiência Intelectual/diagnóstico , Transtornos do Neurodesenvolvimento/diagnóstico , Deleção de SequênciaRESUMO
Retroviruses can be detected by the innate immune sensor cyclic GMP-AMP synthase (cGAS), which recognizes reverse-transcribed DNA and activates an antiviral response. However, the extent to which HIV-1 shields its genome from cGAS recognition remains unclear. To study this process in mechanistic detail, we reconstituted reverse transcription, genome release, and innate immune sensing of HIV-1 in a cell-free system. We found that wild-type HIV-1 capsids protect their genomes from cGAS even after completion of reverse transcription. Viral DNA could be "deprotected" by thermal stress, capsid mutations, or reduced concentrations of inositol hexakisphosphate (IP6) that destabilize the capsid. Strikingly, capsid inhibitors also disrupted viral cores and dramatically potentiated cGAS activity, both in vitro and in cellular infections. Our results provide biochemical evidence that the HIV-1 capsid lattice conceals the genome from cGAS and that chemical or physical disruption of the viral core can expose HIV-1 DNA and activate innate immune signaling.
RESUMO
WDR44 prevents ciliogenesis initiation by regulating RAB11-dependent vesicle trafficking. Here, we describe male patients with missense and nonsense variants within the WD40 repeats (WDR) of WDR44, an X-linked gene product, who display ciliopathy-related developmental phenotypes that we can model in zebrafish. The patient phenotypic spectrum includes developmental delay/intellectual disability, hypotonia, distinct craniofacial features and variable presence of brain, renal, cardiac and musculoskeletal abnormalities. We demonstrate that WDR44 variants associated with more severe disease impair ciliogenesis initiation and ciliary signaling. Because WDR44 negatively regulates ciliogenesis, it was surprising that pathogenic missense variants showed reduced abundance, which we link to misfolding of WDR autonomous repeats and degradation by the proteasome. We discover that disease severity correlates with increased RAB11 binding, which we propose drives ciliogenesis initiation dysregulation. Finally, we discover interdomain interactions between the WDR and NH2-terminal region that contains the RAB11 binding domain (RBD) and show patient variants disrupt this association. This study provides new insights into WDR44 WDR structure and characterizes a new syndrome that could result from impaired ciliogenesis.
Assuntos
Ciliopatias , Genes Ligados ao Cromossomo X , Repetições WD40 , Animais , Humanos , Masculino , Encéfalo , Ciliopatias/genética , Cognição , Peixe-Zebra/genéticaRESUMO
The genetic and molecular basis of flagellar motility has been investigated for several decades, with innovative research strategies propelling advances at a steady pace. Furthermore, as the phenomenon is examined in diverse bacteria, new taxon-specific regulatory and structural features are being elucidated. Motility is also a straightforward bacterial phenotype that can allow undergraduate researchers to explore the palette of molecular genetic tools available to microbiologists. This study, driven primarily by undergraduate researchers, evaluated hundreds of flagellar motility mutants in the Gram-negative plant-associated bacterium Agrobacterium fabrum. The nearly saturating screen implicates a total of 37 genes in flagellar biosynthesis, including genes of previously unknown function.
Assuntos
Agrobacterium , Proteínas de Bactérias , Proteínas de Bactérias/genética , Agrobacterium/genética , Flagelos/metabolismo , Regulação Bacteriana da Expressão GênicaRESUMO
Myeloid dendritic cells (DCs) and macrophages are mononuclear phagocytes with key roles in the immune system. As antigen-presenting cells, they link innate detection of microbes with programming adaptive immune responses. Myeloid DCs and macrophages also play critical roles in development, promote tissue homeostasis, and direct repair in response to injury and inflammation. As cellular migration and organelle dynamics are intimately connected with these processes, it is necessary to develop tools to track myeloid cell behavior and function. Here, we build on previously established protocols to isolate primary human myeloid cells from peripheral blood and report an optimized method for their genetic modification with lentiviral vectors to study processes related to cell migration, activation, and organelle dynamics. Specifically, we provide a protocol for delivering genetically encoded fluorescent markers into primary monocyte-derived DCs (MDDCs) and monocyte-derived macrophages (MDMs) to label mitochondria, peroxisomes, and whole cells. We describe the isolation of primary CD14+ monocytes from peripheral blood using positive selection with magnetic beads and, alternatively, isolation based on plastic adherence. Isolated CD14+ cells can be transduced with lentiviral vectors and subsequently cultured in the presence of cytokines to derive MDDCs or MDMs. This protocol is highly adaptable for cotransduction with vectors to knock down or overexpress genes of interest. These tools enable mechanistic studies of genetically modified myeloid cells through flow cytometry, fluorescence microscopy, and other downstream assays. © 2022 Wiley Periodicals LLC. Basic Protocol: Transduction of MDDCs and MDMs with lentiviral vectors encoding fluorescent markers Alternate Protocol 1: Isolation of monocytes by plastic adhesion Alternate Protocol 2: Transduction of MDDCs and MDMs with lentiviral vectors to knock down or overexpress genes of interest Support Protocol 1: Production and purification of lentiviral vectors for transduction into primary human myeloid cells Support Protocol 2: Flow cytometry of MDDCs and MDMs Support Protocol 3: Fixed and live-cell imaging of fluorescent markers in MDMs and MDDCs.
Assuntos
Células Dendríticas , Monócitos , Movimento Celular , Humanos , Organelas , PlásticosRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China in December 2019 and caused a global pandemic resulting in millions of deaths and tens of millions of patients positive tests. While studies have shown a D614G mutation in the viral spike protein are more transmissible, the effects of this and other mutations on the host response, especially at the cellular level, are yet to be fully elucidated. In this experiment we infected normal human bronchial epithelial (NHBE) cells with the Washington (D614) strain or the New York (G614) strains of SARS-CoV-2. We generated RNA sequencing data at 6, 12, and 24 hours post-infection (hpi) to improve our understanding of how the intracellular host response differs between infections with these two strains. We analyzed these data with a bioinformatics pipeline that identifies differentially expressed genes (DEGs), enriched Gene Ontology (GO) terms and dysregulated signaling pathways. We detected over 2,000 DEGs, over 600 GO terms, and 29 affected pathways between the two infections. Many of these entities play a role in immune signaling and response. A comparison between strains and time points showed a higher similarity between matched time points than across different time points with the same strain in DEGs and affected pathways, but found more similarity between strains across different time points when looking at GO terms. A comparison of the affected pathways showed that the 24hpi samples of the New York strain were more similar to the 12hpi samples of the Washington strain, with a large number of pathways related to translation being inhibited in both strains. These results suggest that the various mutations contained in the genome of these two viral isolates may cause distinct effects on the host transcriptional response in infected host cells, especially relating to how quickly translation is dysregulated after infection. This comparison of the intracellular host response to infection with these two SARS-CoV-2 isolates suggest that some of the mechanisms associated with more severe disease from these viruses could include virus replication, metal ion usage, host translation shutoff, host transcript stability, and immune inhibition.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , New York , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas Virais , WashingtonRESUMO
Hospital-acquired infections pose significant costly global challenges to patient care. Rapid and sensitive methods to identify potential outbreaks are integral to infection control measures. Whole-genome sequencing (WGS)-based bacterial strain typing provides higher discriminatory power over standard nucleotide banding pattern-based methods such as repetitive sequence-based PCR (rep-PCR). However, integration of WGS into clinical epidemiology is limited by the lack of consensus in methodology and data analysis/interpretation. In this study, WGS was performed on genomic DNA extracted from 22 multidrug-resistant Pseudomonas aeruginosa (MDR-PA) isolates using next-generation sequencing. Resulting high-quality reads were analyzed for phylogenetic relatedness using a whole-genome multilocus sequence typing (wgMLST)-based software program and single-nucleotide variant phylogenomics (SNVPhyl). WGS-based results were compared with conventional MLST and archived rep-PCR results. Rep-PCR identified three independent clonal clusters of MDR-PA. Only one clonal cluster identified by rep-PCR, an endemic strain within the pediatric cystic fibrosis population at Texas Children's Hospital, was concordantly identified using wgMLST and SNVPhyl. Results were highly consistent between the three sequence-based analyses (conventional MLST, wgMLST, and SNVPhyl), and these results remained consistent with the addition of 74 MDR-PA genomes. These WGS-based methods provided greater resolution for strain discrimination than rep-PCR or standard MLST classification, and the ease of use of wgMLST software renders it clinically viable for analysis, interpretation, and reporting of WGS-based strain typing.
Assuntos
Pseudomonas aeruginosa , Sequências Repetitivas de Ácido Nucleico , Técnicas de Tipagem Bacteriana/métodos , Criança , Humanos , Tipagem de Sequências Multilocus/métodos , Filogenia , Reação em Cadeia da Polimerase/métodos , Pseudomonas aeruginosa/genética , Sequenciamento Completo do Genoma/métodosRESUMO
Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiological agent of coronavirus disease-2019 (COVID-19), is a novel Betacoronavirus that was first reported in Wuhan, China in December of 2019. The virus has since caused a worldwide pandemic that highlights the need to quickly identify potential prophylactic or therapeutic treatments that can reduce the signs, symptoms, and/or spread of disease when dealing with a novel infectious agent. To combat this problem, we constructed a computational pipeline that uniquely combines existing tools to predict drugs and biologics that could be repurposed to combat an emerging pathogen. Methods: Our workflow analyzes RNA-sequencing data to determine differentially expressed genes, enriched Gene Ontology (GO) terms, and dysregulated pathways in infected cells, which can then be used to identify US Food and Drug Administration (FDA)-approved drugs that target human proteins within these pathways. We used this pipeline to perform a meta-analysis of RNA-seq data from cells infected with three Betacoronavirus species including severe acute respiratory syndrome coronavirus (SARS-CoV; SARS), Middle East respiratory syndrome coronavirus (MERS-CoV; MERS), and SARS-CoV-2, as well as respiratory syncytial virus and influenza A virus to identify therapeutics that could be used to treat COVID-19. Results: This analysis identified twelve existing drugs, most of which already have FDA-approval, that are predicted to counter the effects of SARS-CoV-2 infection. These results were cross-referenced with interventional clinical trials and other studies in the literature to identify drugs on our list that had previously been identified or used as treatments for COIVD-19 including canakinumab, anakinra, tocilizumab, sarilumab, and baricitinib. Conclusions: While the results reported here are specific to Betacoronaviruses, such as SARS-CoV-2, our bioinformatics pipeline can be used to quickly identify candidate therapeutics for future emerging infectious diseases.