Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Chem Lab Med ; 58(6): 914-929, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31665113

RESUMO

Mass spectrometry (MS) is the workhorse of metabolomics, proteomics and lipidomics. Mass spectrometry imaging (MSI), its extension to spatially resolved analysis of tissues, is a powerful tool for visualizing molecular information within the histological context of tissue. This review summarizes recent developments in MSI and highlights current challenges that remain to achieve molecular imaging at the cellular level of clinical specimens. We focus on matrix-assisted laser desorption/ionization (MALDI)-MSI. We discuss the current status of each of the analysis steps and remaining challenges to reach the desired level of cellular imaging. Currently, analyte delocalization and degradation, matrix crystal size, laser focus restrictions and detector sensitivity are factors that are limiting spatial resolution. New sample preparation devices and laser optic systems are being developed to push the boundaries of these limitations. Furthermore, we review the processing of cellular MSI data and images, and the systematic integration of these data in the light of available algorithms and databases. We discuss roadblocks in the data analysis pipeline and show how technology from other fields can be used to overcome these. Finally, we conclude with curative and community efforts that are needed to enable contextualization of the information obtained.


Assuntos
Análise de Célula Única/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Humanos
2.
Angew Chem Int Ed Engl ; 59(40): 17447-17450, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32668069

RESUMO

The large-scale and label-free molecular characterization of single cells in their natural tissue habitat remains a major challenge in molecular biology. We present a method that integrates morphometric image analysis to delineate and classify individual cells with their single-cell-specific molecular profiles. This approach provides a new means to study spatial biological processes such as cancer field effects and the relationship between morphometric and molecular features.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Colo/citologia , Colo/patologia , Modelos Animais de Doenças , Lipídeos/química , Análise de Célula Única , Neoplasias Gástricas/patologia , Suínos
3.
Anal Chem ; 90(8): 5130-5138, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29570976

RESUMO

Hepatocellular lipid accumulation characterizes nonalcoholic fatty liver disease (NAFLD). However, the types of lipids associated with disease progression are debated, as is the impact of their localization. Traditional lipidomics analysis using liver homogenates or plasma dilutes and averages lipid concentrations, and does not provide spatial information about lipid distribution. We aimed to characterize the distribution of specific lipid species related to NAFLD severity by performing label-free molecular analysis by mass spectrometry imaging (MSI). Fresh frozen liver biopsies from obese subjects undergoing bariatric surgery ( n = 23) with various degrees of NAFLD were cryosectioned and analyzed by matrix-assisted laser desorption/ionization (MALDI)-MSI. Molecular identification was verified by tandem MS. Tissue sections were histopathologically stained, annotated according to the Kleiner classification, and coregistered with the MSI data set. Lipid pathway analysis was performed and linked to local proteome networks. Spatially resolved lipid profiles showed pronounced differences between nonsteatotic and steatotic tissues. Lipid identification and network analyses revealed phosphatidylinositols and arachidonic acid metabolism in nonsteatotic regions, whereas low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) metabolism was associated with steatotic tissue. Supervised and unsupervised discriminant analysis using lipid based classifiers outperformed simulated analysis of liver tissue homogenates in predicting steatosis severity. We conclude that lipid composition of steatotic and nonsteatotic tissue is highly distinct, implying that spatial context is important for understanding the mechanisms of lipid accumulation in NAFLD. MSI combined with principal component-linear discriminant analysis linking lipid and protein pathways represents a novel tool enabling detailed, comprehensive studies of the heterogeneity of NAFLD.


Assuntos
Lipídeos/análise , Hepatopatia Gordurosa não Alcoólica/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Área Sob a Curva , Análise Discriminante , Humanos , Lipoproteínas LDL/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Análise de Componente Principal , Curva ROC , Índice de Gravidade de Doença
4.
JCI Insight ; 6(24)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34752419

RESUMO

BACKGROUND: Although aberrant glycosylation is recognized as a hallmark of cancer, glycosylation in clinical breast cancer (BC) metastasis has not yet been studied. While preclinical studies show that the glycocalyx coating of cancer cells is involved in adhesion, migration, and metastasis, glycosylation changes from primary tumor (PT) to various metastatic sites remain unknown in patients. METHODS: We investigated N-glycosylation profiles in 17 metastatic BC patients from our rapid autopsy program. Primary breast tumor, lymph node metastases, multiple systemic metastases, and various normal tissue cores from each patient were arranged on unique single-patient tissue microarrays (TMAs). We performed mass spectrometry imaging (MSI) combined with extensive pathology annotation of these TMAs, and this process enabled spatially differentiated cell-based analysis of N-glycosylation patterns in metastatic BC. RESULTS: N-glycan abundance increased during metastatic progression independently of BC subtype and treatment regimen, with high-mannose glycans most frequently elevated in BC metastases, followed by fucosylated and complex glycans. Bone metastasis, however, displayed increased core-fucosylation and decreased high-mannose glycans. Consistently, N-glycosylated proteins and N-glycan biosynthesis genes were differentially expressed during metastatic BC progression, with reduced expression of mannose-trimming enzymes and with elevated EpCAM, N-glycan branching, and sialyation enzymes in BC metastases versus PT. CONCLUSION: We show in patients that N-glycosylation of breast cancer cells undergoing metastasis occurs in a metastatic site-specific manner, supporting the clinical importance of high-mannose, fucosylated, and complex N-glycans as future diagnostic markers and therapeutic targets in metastatic BC. FUNDING: NIH grants R01CA213428, R01CA213492, R01CA264901, T32CA193145, Dutch Province Limburg "LINK", European Union ERA-NET TRANSCAN2-643638.


Assuntos
Neoplasias da Mama/genética , Manose/metabolismo , Polissacarídeos/metabolismo , Adulto , Idoso , Neoplasias da Mama/patologia , Feminino , Glicosilação , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica
5.
J Am Soc Mass Spectrom ; 31(1): 155-163, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-32881505

RESUMO

Mass Spectrometry Imaging (MSI) is an established and powerful MS technique that enables molecular mapping of tissues and cells finding widespread applications in academic, medical, and pharmaceutical industries. As both the applications and MSI technology have undergone rapid growth and improvement, the challenges associated both with analyzing large datasets and identifying the many detected molecular species have become apparent. The lack of readily available and comprehensive software covering all necessary data analysis steps has further compounded this challenge. To address this issue we developed LipostarMSI, comprehensive and vendor-neutral software for targeted and untargeted MSI data analysis. Through user-friendly implementation of image visualization and co-registration, univariate and multivariate image and spectral analysis, and for the first time, advanced lipid, metabolite, and drug metabolite (MetID) automated identification, LipostarMSI effectively streamlines biochemical interpretation of the data. Here, we introduce LipostarMSI and case studies demonstrating the versatility and many capabilities of the software.

6.
Sci Rep ; 9(1): 2915, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814528

RESUMO

Mass spectrometry imaging (MSI) and histology are complementary analytical tools. Integration of the two imaging modalities can enhance the spatial resolution of the MSI beyond its experimental limits. Patch-based super resolution (PBSR) is a method where high spatial resolution features from one image modality guide the reconstruction of a low resolution image from a second modality. The principle of PBSR lies in image redundancy and aims at finding similar pixels in the neighborhood of a central pixel that are then used to guide reconstruction of the central pixel. In this work, we employed PBSR to increase the resolution of MSI. We validated the proposed pipeline by using a phantom image (micro-dissected logo within a tissue) and mouse cerebellum samples. We compared the performance of the PBSR with other well-known methods: linear interpolation (LI) and image fusion (IF). Quantitative and qualitative assessment showed advantage over the former and comparability with the latter. Furthermore, we demonstrated the potential applicability of PBSR in a clinical setting by accurately integrating structural (i.e., histological) and molecular (i.e., MSI) information from a case study of a dog liver.


Assuntos
Cerebelo/patologia , Diagnóstico por Imagem/métodos , Aumento da Imagem/métodos , Fígado/patologia , Algoritmos , Animais , Técnicas de Laboratório Clínico , Cães , Humanos , Espectrometria de Massas/métodos , Camundongos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA