Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(29): 18992-19002, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38990779

RESUMO

Use of a template triggers an epitaxial interaction with the depositing material during synthesis. Recent studies have demonstrated that two-dimensional tellurium (tellurene) can be directionally oriented when grown on transition metal dichalcogenide (TMD) templates. Specifically, employing a T-phase TMD, such as WTe2, restricts the growth direction even further due to its anisotropic nature, which allows for the synthesis of well-oriented tellurene films. Despite this, producing large-area epitaxial films still remains a significant challenge. Here, we report the continuous synthesis of a 1T'-MoTe2 template via chemical vapor deposition and tellurene via vapor transport. The interaction between helical Te and the 1T'-MoTe2 template facilitates the Te chains to collapse into ribbon shapes, enhancing lateral growth at a rate approximately 6 times higher than in the vertical direction, as confirmed by scanning electron microscopy and atomic force microscopy. Interestingly, despite the predominance of the lateral growth, cross-sectional transmission electron microscopy analysis of the tellurene ribbons revealed a consistent 60-degree incline at the edges. This suggests that the edges of the tellurene ribbons, where they contact the template surface, are favorable sites for additional Te absorption, which then stacks along the incline angle to expand. Furthermore, controlling the synthesis temperature, duration, and preheating time has facilitated the successful synthesis of tellurene films. The resultant tellurene exhibited hole mobility as high as ∼400 cm2/V s. After removing the underlying metallic template with plasma treatment, the film showed a current on/off ratio of ∼103. This ratio was confirmed by two-terminal field-effect transistor measurements and supported by near-field terahertz (THz) spectroscopy mapping.

2.
Nat Commun ; 14(1): 5548, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684279

RESUMO

We report the emergence of dark-excitons in transition-metal-dichalcogenide (TMD) heterostructures that strongly rely on the stacking sequence, i.e., momentum-dark K-Q exciton located exclusively at the top layer of the heterostructure. The feature stems from band renormalization and is distinct from those of typical neutral excitons or trions, regardless of materials, substrates, and even homogeneous bilayers, which is further confirmed by scanning tunneling spectroscopy. To understand the unusual stacking sequence, we introduce the excitonic Elliot formula by imposing strain exclusively on the top layer that could be a consequence of the stacking process. We further find that the intensity ratio of Q- to K-excitons in the same layer is inversely proportional to laser power, unlike for conventional K-K excitons. This can be a metric for engineering the intensity of dark K-Q excitons in TMD heterostructures, which could be useful for optical power switches in solar panels.

3.
ACS Nano ; 15(2): 2849-2857, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33470093

RESUMO

Unusually high exciton binding energies (BEs), as much as ∼1 eV in monolayer transition-metal dichalcogenides, provide opportunities for exploring exotic and stable excitonic many-body effects. These include many-body neutral excitons, trions, biexcitons, and defect-induced excitons at room temperature, rarely realized in bulk materials. Nevertheless, the defect-induced trions correlated with charge screening have never been observed, and the corresponding BEs remain unknown. Here we report defect-induced A-trions and B-trions in monolayer tungsten disulfide (WS2) via carrier screening engineering with photogenerated carrier modulation, external doping, and substrate scattering. Defect-induced trions strongly couple with inherent SiO2 hole traps under high photocarrier densities and become more prominent in rhenium-doped WS2. The absence of defect-induced trion peaks was confirmed using a trap-free hexagonal boron nitride substrate, regardless of power density. Moreover, many-body excitonic charge states and their BEs were compared via carrier screening engineering at room temperature. The highest BE was observed in the defect-induced A-trion state (∼214 meV), comparably higher than the trion (209 meV) and neutral exciton (174 meV), and further tuned by external photoinduced carrier density control. This investigation allows us to demonstrate defect-induced trion BE localization via spatial BE mapping in the monolayer WS2 midflake regions distinctive from the flake edges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA