Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Exp Cell Res ; 417(1): 113204, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588795

RESUMO

Muscle stem cells (MuSCs) are involved in muscle maintenance and regeneration. Mechanically loaded MuSCs within their native niche undergo tensile and shear deformations, but how MuSCs sense mechanical stimuli and translate these into biochemical signals regulating function and fate is still poorly understood. We aimed to investigate whether the glycocalyx is involved in the MuSC mechanoresponse, and whether MuSC morphology affects mechanical loading-induced pressure, shear stress, and fluid velocity distribution. FSS-induced deformation of active proliferating MuSCs (myoblasts) with intact or degraded glycocalyx was assessed by live-cell imaging. Glycocalyx-degradation did not significantly affect nitric oxide production, but reduced FSS-induced myoblast deformation and modulated gene expression. Finite-element analysis revealed that the distribution of FSS-induced pressure, shear stress, and fluid velocity on myoblasts was non-uniform, and the magnitude depended on myoblast morphology and apex-height. In conclusion, our results suggest that the glycocalyx does not play a role in NO production in myoblasts but might impact mechanotransduction and gene expression, which needs further investigation. Future studies will unravel the underlying mechanism by which the glycocalyx affects FSS-induced myoblast deformation, which might be related to increased drag forces. Moreover, MuSCs with varying apex-height experience different levels of FSS-induced pressure, shear stress, and fluid velocity, suggesting differential responsiveness to fluid shear forces.


Assuntos
Glicocálix , Mecanotransdução Celular , Glicocálix/metabolismo , Mecanotransdução Celular/fisiologia , Mioblastos/metabolismo , Óxido Nítrico/metabolismo , Estresse Mecânico
2.
Curr Osteoporos Rep ; 21(6): 731-742, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37792246

RESUMO

PURPOSE OF REVIEW: Orthodontic tooth movement is characterized by periodontal tissue responses to mechanical loading, leading to clinically relevant functional adaptation of jaw bone. Since osteocytes are significant in mechanotransduction and orchestrate osteoclast and osteoblast activity, they likely play a central role in orthodontic tooth movement. In this review, we attempt to shed light on the impact and role of osteocyte mechanotransduction during orthodontic tooth movement. RECENT FINDINGS: Mechanically loaded osteocytes produce signaling molecules, e.g., bone morphogenetic proteins, Wnts, prostaglandins, osteopontin, nitric oxide, sclerostin, and RANKL, which modulate the recruitment, differentiation, and activity of osteoblasts and osteoclasts. The major signaling pathways activated by mechanical loading in osteocytes are the wingless-related integration site (Wnt)/ß-catenin and RANKL pathways, which are key regulators of bone metabolism. Moreover, osteocytes are capable of orchestrating bone adaptation during orthodontic tooth movement. A better understanding of the role of osteocyte mechanotransduction is crucial to advance orthodontic treatment. The optimal force level on the periodontal tissues for orthodontic tooth movement producing an adequate biological response, is debated. This review emphasizes that both mechanoresponses and inflammation are essential for achieving tooth movement clinically. To fully comprehend the role of osteocyte mechanotransduction in orthodontic tooth movement, more knowledge is needed of the biological pathways involved. This will contribute to optimization of orthodontic treatment and enhance patient outcomes.


Assuntos
Mecanotransdução Celular , Osteócitos , Humanos , Osteócitos/fisiologia , Técnicas de Movimentação Dentária , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Remodelação Óssea/fisiologia
3.
Biophys J ; 120(13): 2665-2678, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34087215

RESUMO

Muscle stem cells (MuSCs) are requisite for skeletal muscle regeneration and homeostasis. Proper functioning of MuSCs, including activation, proliferation, and fate decision, is determined by an orchestrated series of events and communication between MuSCs and their niche. A multitude of biochemical stimuli are known to regulate MuSC fate and function. However, in addition to biochemical factors, it is conceivable that MuSCs are subjected to mechanical forces during muscle stretch-shortening cycles because of myofascial connections between MuSCs and myofibers. MuSCs respond to mechanical forces in vitro, but it remains to be proven whether physical forces are also exerted on MuSCs in their native niche and whether they contribute to the functioning and fate of MuSCs. MuSC deformation in their native niche resulting from mechanical loading of ex vivo myofiber bundles was visualized utilizing mT/mG double-fluorescent Cre-reporter mouse and multiphoton microscopy. MuSCs were subjected to 1 h pulsating fluid shear stress (PFSS) with a peak shear stress rate of 6.5 Pa/s. After PFSS treatment, nitric oxide, messenger RNA (mRNA) expression levels of genes involved in regulation of MuSC proliferation and differentiation, ERK 1/2, p38, and AKT activation were determined. Ex vivo stretching of extensor digitorum longus and soleus myofiber bundles caused compression as well as tensile and shear deformation of MuSCs in their niche. MuSCs responded to PFSS in vitro with increased nitric oxide production and an upward trend in iNOS mRNA levels. PFSS enhanced gene expression of c-Fos, Cdk4, and IL-6, whereas expression of Wnt1, MyoD, Myog, Wnt5a, COX2, Rspo1, Vangl2, Wnt10b, and MGF remained unchanged. ERK 1/2 and p38 MAPK signaling were also upregulated after PFSS treatment. We conclude that MuSCs in their native niche are subjected to force-induced deformations due to myofiber stretch-shortening. Moreover, MuSCs are mechanoresponsive, as evidenced by PFSS-mediated expression of factors by MuSCs known to promote proliferation.


Assuntos
Músculo Esquelético , Mioblastos , Animais , Diferenciação Celular , Expressão Gênica , Camundongos , Estresse Mecânico
4.
Tissue Eng Part C Methods ; 29(6): 230-241, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253166

RESUMO

Bioreactor systems, for example, spinner flask and perfusion bioreactors, and cell-seeded three-dimensional (3D)-printed scaffolds are used in bone tissue engineering strategies to stimulate cells and produce bone tissue suitable for implantation into the patient. The construction of functional and clinically relevant bone graft using cell-seeded 3D-printed scaffolds within bioreactor systems is still a challenge. Bioreactor parameters, for example, fluid shear stress and nutrient transport, will crucially affect cell function on 3D-printed scaffolds. Therefore, fluid shear stress induced by spinner flask and perfusion bioreactors might differentially affect osteogenic responsiveness of pre-osteoblasts inside 3D-printed scaffolds. We designed and fabricated surface-modified 3D-printed poly-ɛ-caprolactone (PCL) scaffolds, as well as static, spinner flask, and perfusion bioreactors to determine fluid shear stress and osteogenic responsiveness of MC3T3-E1 pre-osteoblasts seeded on the scaffolds in the bioreactors using finite element (FE)-modeling and experiments. FE-modeling was used to quantify wall shear stress (WSS) distribution and magnitude inside 3D-printed PCL scaffolds within spinner flask and perfusion bioreactors. MC3T3-E1 pre-osteoblasts were seeded on NaOH surface-modified 3D-printed PCL scaffolds, and cultured in customized static, spinner flask, and perfusion bioreactors up to 7 days. The scaffolds' physicochemical properties and pre-osteoblast function were assessed experimentally. FE-modeling showed that spinner flask and perfusion bioreactors locally affected WSS distribution and magnitude inside the scaffolds. The WSS distribution was more homogeneous inside scaffolds in perfusion than in spinner flask bioreactors. The average WSS on scaffold-strand surfaces ranged from 0 to 6.5 mPa for spinner flask bioreactors, and from 0 to 4.1 mPa for perfusion bioreactors. Surface modification of scaffolds by NaOH resulted in a surface with a honeycomb-like pattern and increased surface roughness (1.6-fold), but decreased water contact angle (0.3-fold). Both spinner flask and perfusion bioreactors increased cell spreading, proliferation, and distribution throughout the scaffolds. Perfusion, but not spinner flask bioreactors more strongly enhanced collagen (2.2-fold) and calcium deposition (2.1-fold) throughout the scaffolds after 7 days compared with static bioreactors, likely due to uniform WSS-induced mechanical stimulation of the cells revealed by FE-modeling. In conclusion, our findings indicate the importance of using accurate FE models to estimate WSS and determine experimental conditions for designing cell-seeded 3D-printed scaffolds in bioreactor systems. Impact Statement The success of cell-seeded three-dimensional (3D)-printed scaffolds depends on cell stimulation by biomechanical/biochemical factors to produce bone tissue suitable for implantation into the patient. We designed and fabricated surface-modified 3D-printed poly-ɛ-caprolactone (PCL) scaffolds, as well as static, spinner flask, and perfusion bioreactors to determine wall shear stress (WSS) and osteogenic responsiveness of pre-osteoblasts seeded on the scaffolds using finite element (FE)-modeling and experiments. We found that cell-seeded 3D-printed PCL scaffolds within perfusion bioreactors more strongly enhanced osteogenic activity than within spinner flask bioreactors. Our results indicate the importance of using accurate FE-models to estimate WSS and determine experimental conditions for designing cell-seeded 3D-printed scaffolds in bioreactor systems.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Hidróxido de Sódio , Engenharia Tecidual/métodos , Reatores Biológicos , Perfusão
5.
Front Bioeng Biotechnol ; 10: 957263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213076

RESUMO

The lack of bioactivity in three-dimensional (3D)-printing of poly-є-caprolactone (PCL) scaffolds limits cell-material interactions in bone tissue engineering. This constraint can be overcome by surface-functionalization using glycosaminoglycan-like anionic polysaccharides, e.g., carboxymethyl cellulose (CMC), a plant-based carboxymethylated, unsulfated polysaccharide, and κ-carrageenan, a seaweed-derived sulfated, non-carboxymethylated polysaccharide. The sulfation of CMC and carboxymethylation of κ-carrageenan critically improve their bioactivity. However, whether sulfated carboxymethyl cellulose (SCMC) and carboxymethyl κ-carrageenan (CM-κ-Car) affect the osteogenic differentiation potential of pre-osteoblasts on 3D-scaffolds is still unknown. Here, we aimed to assess the effects of surface-functionalization by SCMC or CM-κ-Car on the physicochemical and mechanical properties of 3D-printed PCL scaffolds, as well as the osteogenic response of pre-osteoblasts. MC3T3-E1 pre-osteoblasts were seeded on 3D-printed PCL scaffolds that were functionalized by CM-κ-Car (PCL/CM-κ-Car) or SCMC (PCL/SCMC), cultured up to 28 days. The scaffolds' physicochemical and mechanical properties and pre-osteoblast function were assessed experimentally and by finite element (FE) modeling. We found that the surface-functionalization by SCMC and CM-κ-Car did not change the scaffold geometry and structure but decreased the elastic modulus. Furthermore, the scaffold surface roughness and hardness increased and the scaffold became more hydrophilic. The FE modeling results implied resilience up to 2% compression strain, which was below the yield stress for all scaffolds. Surface-functionalization by SCMC decreased Runx2 and Dmp1 expression, while surface-functionalization by CM-κ-Car increased Cox2 expression at day 1. Surface-functionalization by SCMC most strongly enhanced pre-osteoblast proliferation and collagen production, while CM-κ-Car most significantly increased alkaline phosphatase activity and mineralization after 28 days. In conclusion, surface-functionalization by SCMC or CM-κ-Car of 3D-printed PCL-scaffolds enhanced pre-osteoblast proliferation and osteogenic activity, likely due to increased surface roughness and hydrophilicity. Surface-functionalization by SCMC most strongly enhanced cell proliferation, while CM-κ-Car most significantly promoted osteogenic activity, suggesting that surface-functionalization by CM-κ-Car may be more promising, especially in the short-term, for in vivo bone formation.

6.
Biomed Mater ; 16(6)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34670200

RESUMO

A challenging approach of three-dimensional (3D)-biomimetic scaffold design for bone tissue engineering is to improve scaffold bioactivity and mechanical properties. We aimed to design and fabricate 3D-polycaprolactone (PCL)-based nanocomposite scaffold containing a high concentration homogeneously distributed carbonated-nanohydroxyapatite (C-nHA)-particles in combination with immobilized-collagen to mimic real bone properties. PCL-scaffolds without/with C-nHA at 30%, 45%, and 60% (wt/wt) were 3D-printed. PCL/C-nHA60%-scaffolds were surface-modified by NaOH-treatment and collagen-immobilization. Physicomechanical and biological properties were investigated experimentally and by finite-element (FE) modeling. Scaffold surface-roughness enhanced by increasing C-nHA (1.7 - 6.1-fold), but decreased by surface-modification (0.6-fold). The contact angle decreased by increasing C-nHA (0.9 - 0.7-fold), and by surface-modification (0.5-fold). The zeta potential decreased by increasing C-nHA (3.2-9.9-fold). Average elastic modulus, compressive strength, and reaction force enhanced by increasing C-nHA and by surface-modification. FE modeling revealed that von Mises stress distribution became less homogeneous by increasing C-nHA, and by surface-modification. Maximal von Mises stress for 2% compression strain in all scaffolds did not exceed yield stress for bulk-material. 3D-printed PCL/C-nHA60% with surface-modification enhanced pre-osteoblast spreading, proliferation, collagen deposition, alkaline phosphatase activity, and mineralization. In conclusion, a novel biomimetic 3D-printed PCL-scaffold containing a high concentration C-nHA with surface-modification was successfully fabricated. It exhibited superior physicomechanical and biological properties, making it a promising biomaterial for bone tissue engineering.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Biomimética , Colágeno , Durapatita , Osteogênese , Poliésteres , Impressão Tridimensional , Engenharia Tecidual/métodos
7.
Physiol Rep ; 9(12): e14917, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34174021

RESUMO

Bone mass increases after error-loading, even in the absence of osteocytes. Loaded osteoblasts may produce a combination of growth factors affecting adjacent osteoblast differentiation. We hypothesized that osteoblasts respond to a single load in the short-term (minutes) by changing F-actin stress fiber distribution, in the intermediate-term (hours) by signaling molecule production, and in the long-term (days) by differentiation. Furthermore, growth factors produced during and after mechanical loading by pulsating fluid flow (PFF) will affect osteogenic differentiation. MC3T3-E1 pre-osteoblasts were either/not stimulated by 60 min PFF (amplitude, 1.0 Pa; frequency, 1 Hz; peak shear stress rate, 6.5 Pa/s) followed by 0-6 h, or 21/28 days of post-incubation without PFF. Computational analysis revealed that PFF immediately changed distribution and magnitude of fluid dynamics over an adherent pre-osteoblast inside a parallel-plate flow chamber (immediate impact). Within 60 min, PFF increased nitric oxide production (5.3-fold), altered actin distribution, but did not affect cell pseudopodia length and cell orientation (initial downstream impact). PFF transiently stimulated Fgf2, Runx2, Ocn, Dmp1, and Col1⍺1 gene expression between 0 and 6 h after PFF cessation. PFF did not affect alkaline phosphatase nor collagen production after 21 days, but altered mineralization after 28 days. In conclusion, a single bout of PFF with indirect associated release of biochemical factors, stimulates osteoblast differentiation in the long-term, which may explain enhanced bone formation resulting from mechanical stimuli.


Assuntos
Diferenciação Celular/fisiologia , Osteoblastos/fisiologia , Fluxo Pulsátil/fisiologia , Actinas/metabolismo , Actinas/fisiologia , Fosfatase Alcalina/metabolismo , Animais , Linhagem Celular , Colágeno/metabolismo , Análise de Elementos Finitos , Expressão Gênica , Camundongos , Óxido Nítrico/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia
8.
J Mech Behav Biomed Mater ; 104: 103638, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32174396

RESUMO

In bone tissue engineering, prediction of forces induced to the native bone during normal functioning is important in the design, fabrication, and integration of a scaffold with the host. The aim of this study was to customize the mechanical properties of a layer-by-layer 3D-printed poly(ϵ-caprolactone) (PCL) scaffold estimated by finite element (FE) modeling in order to match the requirements of the defect, to prevent mechanical failure, and ensure optimal integration with the surrounding tissue. Forces and torques induced on the mandibular symphysis during jaw opening and closing were predicted by FE modeling. Based on the predicted forces, homogeneous-structured PCL scaffolds with 3 different void sizes (0.3, 0.6, and 0.9 mm) were designed and 3D-printed using an extrusion based 3D-bioprinter. In addition, 2 gradient-structured scaffolds were designed and 3D-printed. The first gradient scaffold contained 2 regions (0.3 mm and 0.6 mm void size in the upper and lower half, respectively), whereas the second gradient scaffold contained 3 regions (void sizes of 0.3, 0.6, and 0.9 mm in the upper, middle and lower third, respectively). Scaffolds were tested for their compressive and tensile strength in the upper and lower halves. The actual void size of the homogeneous scaffolds with designed void size of 0.3, 0.6, and 0.9 mm was 0.20, 0.59, and 0.95 mm, respectively. FE modeling showed that during opening and closing of the jaw, the highest force induced on the symphysis was a compressive force in the transverse direction. The compressive force was induced throughout the symphyseal line and reduced from top (362.5 N, compressive force) to bottom (107.5 N, tensile force) of the symphysis. Compressive and tensile strength of homogeneous scaffolds decreased by 1.4-fold to 3-fold with increasing scaffold void size. Both gradient scaffolds had higher compressive strength in the upper half (2 region-gradient scaffold: 4.9 MPa; 3 region-gradient scaffold: 4.1 MPa) compared with the lower half (2 region-gradient scaffold: 2.5 MPa; 3 region-gradient scaffold: 2.7 MPa) of the scaffold. 3D-printed PCL scaffolds had higher compressive strength in the scaffold layer-by-layer building direction compared with the side direction, and a very low tensile strength in the scaffold layer-by-layer building direction. Fluid shear stress and fluid pressure distribution in the gradient scaffolds were more homogeneous than in the 0.3 mm void size scaffold and similar to the 0.6 mm and 0.9 mm void size scaffolds. In conclusion, these data show that the mechanical properties of 3D-printed PCL scaffolds can be tailored based on the predicted forces on the mandibular symphysis. These 3D-printed PCL scaffolds had different mechanical properties in scaffold building direction compared with the side direction, which should be taken into account when placing the scaffold in the defect site. Our findings might have implications for improved performance and integration of scaffolds with native tissue.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Caproatos , Força Compressiva , Lactonas , Mandíbula , Poliésteres , Porosidade , Impressão Tridimensional
9.
Comput Biol Med ; 124: 103826, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32798924

RESUMO

Fluid flow dynamics and oxygen-concentration in 3D-printed scaffolds within perfusion bioreactors are sensitive to controllable bioreactor parameters such as inlet flow rate. Here we aimed to determine fluid flow dynamics, oxygen-concentration, and cell proliferation and distribution in 3D-printed scaffolds as a result of different inlet flow rates of perfusion bioreactors using experiments and finite element modeling. Pre-osteoblasts were treated with 1 h pulsating fluid flow with low (0.8 Pa; PFFlow) or high peak shear stress (6.5 Pa; PFFhigh), and nitric oxide (NO) production was measured to validate shear stress sensitivity. Computational analysis was performed to determine fluid flow between 3D-scaffold-strands at three inlet flow rates (0.02, 0.1, 0.5 ml/min) during 5 days. MC3T3-E1 pre-osteoblast proliferation, matrix production, and oxygen-consumption in response to fluid flow in 3D-printed scaffolds inside a perfusion bioreactor were experimentally assessed. PFFhigh more strongly stimulated NO production by pre-osteoblasts than PFFlow. 3D-simulation demonstrated that dependent on inlet flow rate, fluid velocity reached a maximum (50-1200 µm/s) between scaffold-strands, and fluid shear stress (0.5-4 mPa) and wall shear stress (0.5-20 mPa) on scaffold-strands surfaces. At all inlet flow rates, gauge fluid pressure and oxygen-concentration were similar. The simulated cell proliferation and distribution, and oxygen-concentration data were in good agreement with the experimental results. In conclusion, varying a perfusion bioreactor's inlet flow rate locally affects fluid velocity, fluid shear stress, and wall shear stress inside 3D-printed scaffolds, but not gauge fluid pressure, and oxygen-concentration, which seems crucial for optimized bone tissue engineering strategies using bioreactors, scaffolds, and cells.


Assuntos
Reatores Biológicos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Baías , Perfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA