Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 31(6): 1350-63, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22246183

RESUMO

Retrograde axonal injury signalling stimulates cell body responses in lesioned peripheral neurons. The involvement of importins in retrograde transport suggests that transcription factors (TFs) might be directly involved in axonal injury signalling. Here, we show that multiple TFs are found in axons and associate with dynein in axoplasm from injured nerve. Biochemical and functional validation for one TF family establishes that axonal STAT3 is locally translated and activated upon injury, and is transported retrogradely with dynein and importin α5 to modulate survival of peripheral sensory neurons after injury. Hence, retrograde transport of TFs from axonal lesion sites provides a direct link between axon and nucleus.


Assuntos
Axônios/metabolismo , Gânglios Espinais/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Transporte Axonal/fisiologia , Núcleo Celular/metabolismo , Dineínas/metabolismo , Carioferinas/metabolismo , Masculino , Camundongos , Transporte Proteico/fisiologia , Ratos , Ratos Wistar , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia
2.
Neuron ; 45(5): 715-26, 2005 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-15748847

RESUMO

How are phosphorylated kinases transported over long intracellular distances, such as in the case of axon to cell body signaling after nerve injury? Here, we show that the MAP kinases Erk1 and Erk2 are phosphorylated in sciatic nerve axoplasm upon nerve injury, concomitantly with the production of soluble forms of the intermediate filament vimentin by local translation and calpain cleavage in axoplasm. Vimentin binds phosphorylated Erks (pErk), thus linking pErk to the dynein retrograde motor via direct binding of vimentin to importin beta. Injury-induced Elk1 activation and neuronal regeneration are inhibited or delayed in dorsal root ganglion neurons from vimentin null mice, and in rats treated with a MEK inhibitor or with a peptide that prevents pErk-vimentin binding. Thus, soluble vimentin enables spatial translocation of pErk by importins and dynein in lesioned nerve.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuropatia Ciática/metabolismo , Vimentina/biossíntese , Sequência de Aminoácidos/genética , Animais , Transporte Axonal/efeitos dos fármacos , Transporte Axonal/fisiologia , Inibidores Enzimáticos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Ratos , Ratos Wistar , Neuropatia Ciática/genética , Vimentina/genética
3.
Peptides ; 24(9): 1413-23, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14706557

RESUMO

Alzheimer's disease (AD) is characterized by brain plaques containing the beta-amyloid peptide (Abeta). One approach for treating AD is by blocking Abeta aggregation. Activity-dependent neuroprotective protein contains a peptide, NAP that protects neurons in culture against Abeta toxicity. Here, NAP was shown to inhibit Abeta aggregation using: (1) fluorimetry; (2) electron microscopy; (3) high-throughput screening of Abeta deposition onto a synthetic template (synthaloid); and (4) Congo Red staining of neurons. Further assays showed biotin-NAP binding to Abeta. These results suggest that part of the neuroprotective mechanism exerted by NAP is through modulation of toxic protein folding in the extracellular milieu.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Oligopeptídeos/farmacologia , Doença de Alzheimer , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/ultraestrutura , Animais , Animais Recém-Nascidos , Agregação Celular , Células Cultivadas , Vermelho Congo/análise , Cobre/metabolismo , Microscopia Eletrônica , Neurônios/citologia , Neurônios/metabolismo , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/ultraestrutura , Ligação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Ratos
4.
Exp Neurol ; 223(1): 119-27, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19804775

RESUMO

The enhancement of regeneration of damaged axons in both the peripheral and central nervous systems is a widely pursued goal in clinical medicine. Although some of the molecular mechanisms involved in the intrinsic neurite regeneration program have been elucidated, much additional study is required for development of new therapeutics. The majority of studies in the field of axonal regeneration have utilized animal models due to obvious limitations of the accessibility of human neural tissues. Here we describe the use of human embryonic stem cell (hESC)-derived neurons as a novel model for studying neuronal responses to axonal injury. Neurons were generated using PA6 induction and neurites injured in vitro using trituration or laser microdissection. Lesioned neurons re-extended neurites with distinct growth cones. Expression of proteins associated with regeneration were observed in this human in vitro system, including appearance of importin beta1 in processes after neuritomy. Laser-transected hESC-derived neuronal cultures were analyzed for their transcriptional response to injury using Affymetrix expression microarrays. Profound changes in gene expression were observed over a time course of 2 to 24 hours after lesion. The expression of several genes reported to be involved in axonal injury responses in animal models changed following injury of hESC-derived neurons. Thus, hESC-derived neurons may be a useful in vitro model system for mechanistic studies on human axonal injury and regeneration.


Assuntos
Axônios/patologia , Regulação da Expressão Gênica/fisiologia , Regeneração Nervosa/fisiologia , Neuritos/metabolismo , Neurônios/fisiologia , Animais , Axotomia/métodos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Transformada , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Carioferinas/fisiologia , Antígeno Ki-67/metabolismo , Lasers/efeitos adversos , Camundongos , Análise em Microsséries/métodos , Microdissecção/efeitos adversos , Fator de Crescimento Neural/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Células Estromais/fisiologia
5.
Sci Signal ; 3(130): ra53, 2010 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-20628157

RESUMO

Retrograde signaling from axon to soma activates intrinsic regeneration mechanisms in lesioned peripheral sensory neurons; however, the links between axonal injury signaling and the cell body response are not well understood. Here, we used phosphoproteomics and microarrays to implicate approximately 900 phosphoproteins in retrograde injury signaling in rat sciatic nerve axons in vivo and approximately 4500 transcripts in the in vivo response to injury in the dorsal root ganglia. Computational analyses of these data sets identified approximately 400 redundant axonal signaling networks connected to 39 transcription factors implicated in the sensory neuron response to axonal injury. Experimental perturbation of individual overrepresented signaling hub proteins, including Abl, AKT, p38, and protein kinase C, affected neurite outgrowth in sensory neurons. Paradoxically, however, combined perturbation of Abl together with other hub proteins had a reduced effect relative to perturbation of individual proteins. Our data indicate that nerve injury responses are controlled by multiple regulatory components, and suggest that network redundancies provide robustness to the injury response.


Assuntos
Redes Reguladoras de Genes/fisiologia , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Degeneração Retrógrada , Transdução de Sinais/fisiologia , Animais , Gânglios Espinais/lesões , Neuritos , Neurônios/metabolismo , Neurônios/patologia , Fosfoproteínas/análise , Proteômica/métodos , RNA Mensageiro/análise , Ratos , Nervo Isquiático/lesões
6.
Neuron ; 59(2): 241-52, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18667152

RESUMO

Peripheral sensory neurons respond to axon injury by activating an importin-dependent retrograde signaling mechanism. How is this mechanism regulated? Here, we show that Ran GTPase and its associated effectors RanBP1 and RanGAP regulate the formation of importin signaling complexes in injured axons. A gradient of nuclear RanGTP versus cytoplasmic RanGDP is thought to be fundamental for the organization of eukaryotic cells. Surprisingly, we find RanGTP in sciatic nerve axoplasm, distant from neuronal cell bodies and nuclei, and in association with dynein and importin-alpha. Following injury, localized translation of RanBP1 stimulates RanGTP dissociation from importins and subsequent hydrolysis, thereby allowing binding of newly synthesized importin-beta to importin-alpha and dynein. Perturbation of RanGTP hydrolysis or RanBP1 blockade at axonal injury sites reduces the neuronal conditioning lesion response. Thus, neurons employ localized mechanisms of Ran regulation to control retrograde injury signaling in peripheral nerve.


Assuntos
Axônios/enzimologia , Traumatismos dos Nervos Periféricos , Nervos Periféricos/enzimologia , Degeneração Retrógrada/enzimologia , Transdução de Sinais/fisiologia , Proteína ran de Ligação ao GTP/metabolismo , Animais , Axônios/patologia , Células Cultivadas , Carioferinas/biossíntese , Carioferinas/metabolismo , Carioferinas/fisiologia , Masculino , Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Degeneração Retrógrada/patologia , Neuropatia Ciática/enzimologia , Neuropatia Ciática/patologia , Proteína ran de Ligação ao GTP/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA