Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Electrophoresis ; 34(14): 2107-11, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23595638

RESUMO

This paper reports a method for rapid, simple, direct, and reproducible determination of glyphosate and its major metabolite aminomethylphosphonic acid (AMPA). The platform described herein uses polyester-toner microchips incorporating capacitively coupled contactless conductivity detection and electrophoresis separation of the analytes. The polyester-toner microchip presented 150 µm-wide and 12 µm-deep microchannels, with injection and separation lengths of 10 and 40 mm long, respectively. The best results were obtained with 320 kHz frequency, 4.5 Vpp excitation voltage, 80 mmol/L CHES/Tris buffer at pH 8.8, injection in -1.0 kV for 7 s, and separation in -1.5 kV. RSD values related to the peak areas for glyphosate and AMPA were 1.5 and 3.3% and 10.1 and 8.6% for intra- and interchip assays, respectively. The detection limits were 45.1 and 70.5 µmol/L, respectively, without any attempt of preconcentration of the analytes. Finally, the method was applied to river water samples in which glyphosate and AMPA (1.0 mmol/L each) were added. The recovery results were 87.4 and 83.7% for glyphosate and AMPA, respectively. The recovery percentages and LOD values obtained here were similar to others reported in the literature.


Assuntos
Eletroforese em Microchip/métodos , Glicina/análogos & derivados , Herbicidas/análise , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/análise , Condutividade Elétrica , Glicina/análise , Limite de Detecção , Poliésteres/química , Glifosato
2.
Anal Methods ; 5(7): 1652-1657, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23585815

RESUMO

Compared to conventional bench-top instruments, microfluidic devices possess advantageous characteristics including great portability potential, reduced analysis time (minutes), and relatively inexpensive production, putting them on the forefront of modern analytical chemistry. Fabrication of these devices, however, often involves polymeric materials with less-than-ideal surface properties, specific instrumentation, and cumbersome fabrication procedures. In order to overcome such drawbacks, a new hybrid platform is proposed. The platform is centered on the use of 5 interconnecting microfluidic components that serve as the injector or reservoirs. These plastic units are interconnected using standard capillary tubing, enabling in-channel detection by a wide variety of standard techniques, including capacitively-coupled contactless conductivity detection (C4D). Due to the minimum impact on the separation efficiency, the plastic microfluidic components used for the experiments discussed herein were fabricated using an inexpensive engraving tool and standard Plexiglas. The presented approach (named 52-platform) offers a previously unseen versatility: enabling the assembly of the platform within minutes using capillary tubing that differs in length, diameter, or material. The advantages of the proposed design are demonstrated by performing the analysis of inorganic cations by capillary electrophoresis on soil samples from the Atacama Desert.

3.
Chem Commun (Camb) ; 49(97): 11382-4, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24165857

RESUMO

In this communication, we describe for the first time the integration of concentric electrodes (wrapping around the microchannel) in microchips. The use of such electrodes has been shown to be effective towards improvement of the sensitivity and detectability in pressure-driven flow platforms incorporating C(4)D.


Assuntos
Técnicas Eletroquímicas/instrumentação , Análise de Injeção de Fluxo , Dimetilpolisiloxanos/química , Condutividade Elétrica , Eletrodos , Pressão , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA