Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(16): 2991-3009.e13, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37567175

RESUMO

The PIP3/PI3K network is a central regulator of metabolism and is frequently activated in cancer, commonly by loss of the PIP3/PI(3,4)P2 phosphatase, PTEN. Despite huge research investment, the drivers of the PI3K network in normal tissues and how they adapt to overactivation are unclear. We find that in healthy mouse prostate PI3K activity is driven by RTK/IRS signaling and constrained by pathway feedback. In the absence of PTEN, the network is dramatically remodeled. A poorly understood YXXM- and PIP3/PI(3,4)P2-binding PH domain-containing adaptor, PLEKHS1, became the dominant activator and was required to sustain PIP3, AKT phosphorylation, and growth in PTEN-null prostate. This was because PLEKHS1 evaded pathway-feedback and experienced enhanced PI3K- and Src-family kinase-dependent phosphorylation of Y258XXM, eliciting PI3K activation. hPLEKHS1 mRNA and activating Y419 phosphorylation of hSrc correlated with PI3K pathway activity in human prostate cancers. We propose that in PTEN-null cells receptor-independent, Src-dependent tyrosine phosphorylation of PLEKHS1 creates positive feedback that escapes homeostasis, drives PIP3 signaling, and supports tumor progression.


Assuntos
PTEN Fosfo-Hidrolase , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Homeostase , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
2.
Genome Res ; 33(1): 18-31, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36690445

RESUMO

EHMT1 (also known as GLP) is a multifunctional protein, best known for its role as an H3K9me1 and H3K9me2 methyltransferase through its reportedly obligatory dimerization with EHMT2 (also known as G9A). Here, we investigated the role of EHMT1 in the oocyte in comparison to EHMT2 using oocyte-specific conditional knockout mouse models (Ehmt2 cKO, Ehmt1 cKO, Ehmt1/2 cDKO), with ablation from the early phase of oocyte growth. Loss of EHMT1 in Ehmt1 cKO and Ehmt1/2 cDKO oocytes recapitulated meiotic defects observed in the Ehmt2 cKO; however, there was a significant impairment in oocyte maturation and developmental competence in Ehmt1 cKO and Ehmt1/2 cDKO oocytes beyond that observed in the Ehmt2 cKO. Consequently, loss of EHMT1 in oogenesis results, upon fertilization, in mid-gestation embryonic lethality. To identify H3K9 methylation and other meaningful biological changes in each mutant to explore the molecular functions of EHMT1 and EHMT2, we performed immunofluorescence imaging, multi-omics sequencing, and mass spectrometry (MS)-based proteome analyses in cKO oocytes. Although H3K9me1 was depleted only upon loss of EHMT1, H3K9me2 was decreased, and H3K9me2-enriched domains were eliminated equally upon loss of EHMT1 or EHMT2. Furthermore, there were more significant changes in the transcriptome, DNA methylome, and proteome in Ehmt1/2 cDKO than Ehmt2 cKO oocytes, with transcriptional derepression leading to increased protein abundance and local changes in genic DNA methylation in Ehmt1/2 cDKO oocytes. Together, our findings suggest that EHMT1 contributes to local transcriptional repression in the oocyte, partially independent of EHMT2, and is critical for oogenesis and oocyte developmental competence.


Assuntos
Multiômica , Proteoma , Animais , Camundongos , Proteoma/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Oogênese/genética , Oócitos/metabolismo
3.
Lancet ; 403(10439): 1879-1892, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38697170

RESUMO

BACKGROUND: Microneedle patches (MNPs) have been ranked as the highest global priority innovation for overcoming immunisation barriers in low-income and middle-income countries. This trial aimed to provide the first data on the tolerability, safety, and immunogenicity of a measles and rubella vaccine (MRV)-MNP in children. METHODS: This single-centre, phase 1/2, double-blind, double-dummy, randomised, active-controlled, age de-escalation trial was conducted in The Gambia. To be eligible, all participants had to be healthy according to prespecified criteria, aged 18-40 years for the adult cohort, 15-18 months for toddlers, or 9-10 months for infants, and to be available for visits throughout the follow-up period. The three age cohorts were randomly assigned in a 2:1 ratio (adults) or 1:1 ratio (toddlers and infants) to receive either an MRV-MNP (Micron Biomedical, Atlanta, GA, USA) and a placebo (0·9% sodium chloride) subcutaneous injection, or a placebo-MNP and an MRV subcutaneous injection (MRV-SC; Serum Institute of India, Pune, India). Unmasked staff ransomly assigned the participants using an online application, and they prepared visually identical preparations of the MRV-MNP or placebo-MNP and MRV-SC or placebo-SC, but were not involved in collecting endpoint data. Staff administering the study interventions, participants, parents, and study staff assessing trial endpoints were masked to treatment allocation. The safety population consists of all vaccinated participants, and analysis was conducted according to route of MRV administration, irrespective of subsequent protocol deviations. The immunogenicity population consisted of all vaccinated participants who had a baseline and day 42 visit result available, and who had no protocol deviations considered to substantially affect the immunogenicity endpoints. Solicited local and systemic adverse events were collected for 14 days following vaccination. Unsolicited adverse events were collected to day 180. Age de-escalation between cohorts was based on the review of the safety data to day 14 by an independent data monitoring committee. Serum neutralising antibodies to measles and rubella were measured at baseline, day 42, and day 180. Analysis was descriptive and included safety events, seroprotection and seroconversion rates, and geometric mean antibody concentrations. The trial was registered with the Pan African Clinical Trials Registry PACTR202008836432905, and is complete. FINDINGS: Recruitment took place between May 18, 2021, and May 27, 2022. 45 adults, 120 toddlers, and 120 infants were randomly allocated and vaccinated. There were no safety concerns in the first 14 days following vaccination in either adults or toddlers, and age de-escalation proceeded accordingly. In infants, 93% (52/56; 95% CI 83·0-97·2) seroconverted to measles and 100% (58/58; 93·8-100) seroconverted to rubella following MRV-MNP administration, while 90% (52/58; 79·2-95·2) and 100% (59/59; 93·9-100) seroconverted to measles and rubella respectively, following MRV-SC. Induration at the MRV-MNP application site was the most frequent local reaction occurring in 46 (77%) of 60 toddlers and 39 (65%) of 60 infants. Related unsolicited adverse events, most commonly discolouration at the application site, were reported in 35 (58%) of 60 toddlers and 57 (95%) of 60 infants that had received the MRV-MNP. All local reactions were mild. There were no related severe or serious adverse events. INTERPRETATION: The safety and immunogenicity data support the accelerated development of the MRV-MNP. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Vacina contra Sarampo , Vacina contra Rubéola , Rubéola (Sarampo Alemão) , Humanos , Método Duplo-Cego , Gâmbia , Feminino , Masculino , Vacina contra Rubéola/administração & dosagem , Vacina contra Rubéola/imunologia , Vacina contra Rubéola/efeitos adversos , Lactente , Vacina contra Sarampo/administração & dosagem , Vacina contra Sarampo/imunologia , Adulto , Adolescente , Rubéola (Sarampo Alemão)/prevenção & controle , Adulto Jovem , Sarampo/prevenção & controle , Agulhas , Anticorpos Antivirais/sangue
4.
PLoS Biol ; 19(11): e3001431, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723964

RESUMO

To survive elevated temperatures, ectotherms adjust the fluidity of membranes by fine-tuning lipid desaturation levels in a process previously described to be cell autonomous. We have discovered that, in Caenorhabditis elegans, neuronal heat shock factor 1 (HSF-1), the conserved master regulator of the heat shock response (HSR), causes extensive fat remodeling in peripheral tissues. These changes include a decrease in fat desaturase and acid lipase expression in the intestine and a global shift in the saturation levels of plasma membrane's phospholipids. The observed remodeling of plasma membrane is in line with ectothermic adaptive responses and gives worms a cumulative advantage to warm temperatures. We have determined that at least 6 TAX-2/TAX-4 cyclic guanosine monophosphate (cGMP) gated channel expressing sensory neurons, and transforming growth factor ß (TGF-ß)/bone morphogenetic protein (BMP) are required for signaling across tissues to modulate fat desaturation. We also find neuronal hsf-1 is not only sufficient but also partially necessary to control the fat remodeling response and for survival at warm temperatures. This is the first study to show that a thermostat-based mechanism can cell nonautonomously coordinate membrane saturation and composition across tissues in a multicellular animal.


Assuntos
Adaptação Fisiológica , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Temperatura Alta , Lipídeos/química , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Temperatura Baixa , GMP Cíclico/metabolismo , Glicerofosfolipídeos/metabolismo , Fenótipo , Transdução de Sinais , Estresse Fisiológico , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo
5.
J Biol Chem ; 295(31): 10572-10580, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32546479

RESUMO

Collagen I is a major tendon protein whose polypeptide chains are linked by covalent crosslinks. It is unknown how the crosslinking contributes to the mechanical properties of tendon or whether crosslinking changes in response to stretching or relaxation. Since their discovery, imine bonds within collagen have been recognized as being important in both crosslink formation and collagen structure. They are often described as acidic or thermally labile, but no evidence is available from direct measurements of crosslink levels whether these bonds contribute to the mechanical properties of collagen. Here, we used MS to analyze these imine bonds after reduction with sodium borohydride while under tension and found that their levels are altered in stretched tendon. We studied the changes in crosslink bonding in tail tendon from 11-week-old C57Bl/6 mice at 4% physical strain, at 10% strain, and at breaking point. The crosslinks hydroxy-lysino-norleucine (HLNL), dihydroxy-lysino-norleucine (DHLNL), and lysino-norleucine (LNL) in-creased or decreased depending on the specific crosslink and amount of mechanical strain. We also noted a decrease in glycated lysine residues in collagen, indicating that the imine formed between circulating glucose and lysine is also stress labile. We also carried out mechanical testing, including cyclic testing at 4% strain, stress relaxation tests, and stress-strain profiles taken at breaking point, both with and without sodium borohydride reduction. The results from both the MS studies and mechanical testing provide insights into the chemical changes during tendon stretching and directly link these chemical changes to functional collagen properties.


Assuntos
Colágeno Tipo I/metabolismo , Colágeno/metabolismo , Estresse Mecânico , Cauda/metabolismo , Tendões/metabolismo , Animais , Glicosilação , Camundongos
6.
J Biol Chem ; 295(31): 10562-10571, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32381510

RESUMO

Collagen is a structural protein whose internal cross-linking critically determines the properties and functions of connective tissue. Knowing how the cross-linking of collagen changes with age is key to understanding why the mechanical properties of tissues change over a lifetime. The current scientific consensus is that collagen cross-linking increases with age and that this increase leads to tendon stiffening. Here, we show that this view should be reconsidered. Using MS-based analyses, we demonstrated that during aging of healthy C57BL/6 mice, the overall levels of collagen cross-linking in tail tendon decreased with age. However, the levels of lysine glycation in collagen, which is not considered a cross-link, increased dramatically with age. We found that in 16-week-old diabetic db/db mice, glycation reaches levels similar to those observed in 98-week-old C57BL/6 mice, while the other cross-links typical of tendon collagen either decreased or remained the same as those observed in 20-week-old WT mice. These results, combined with findings from mechanical testing of tendons from these mice, indicate that overall collagen cross-linking in mouse tendon decreases with age. Our findings also reveal that lysine glycation appears to be an important factor that contributes to tendon stiffening with age and in diabetes.


Assuntos
Envelhecimento/metabolismo , Colágeno/metabolismo , Cauda/metabolismo , Tendões/metabolismo , Animais , Glicosilação , Camundongos
7.
J Contemp Dent Pract ; 22(5): 501-505, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34318767

RESUMO

AIM AND OBJECTIVE: This study aimed to evaluate the impact of the lockdown on oral oncology-related out-patient volume at Indian dental institutions. MATERIALS AND METHODS: The total number of newly diagnosed cases of oral submucous fibrosis, oral leukoplakia, oral lichen planus, and oral cancers, recorded at two dental institutional settings before lockdown (January-March 2020) and after lockdown (June-August 2020), were included retrospectively and compared. RESULTS: The study included a total of 797 cases at both institutions. At Institution-I, a total of 312 cases were recorded before the lockdown, and 63 cases were recorded after the lockdown. At Institution-II, a total of 311 cases were reported before lockdown, and 111 cases were recorded after lockdown. Comparisons between the pre-lockdown and post-lockdown data yielded a significant change in the proportions of oral sub-mucous fibrosis, oral leukoplakia, oral lichen planus, and oral cancers at both institutions (Chi-square test; p < 0.001). Following the lockdown, a substantial reduction was observed in the proportion of oral submucous fibrosis (OSMF) cases at both institutions, and the proportion of oral cancers increased at both institutions. There was a significant difference between the proportions of cases reported before lockdown at both institutions (p < 0.001). However, after-lockdown, no such differences were noted (p = 0.69); the absence of significance could most likely be due to the low sample size or low-power during the post-lockdown period. CONCLUSION: The oral potentially malignant disorders (OPMD) and oral cancer (OC) patient volumes reduced substantially following lockdown. During the post-lockdown period, the proportion of oral cancers increased, whereas the proportion of OSMF cases decreased. Results indicate that OPMD and oral cancer patients were impacted differently by the lockdown. CLINICAL SIGNIFICANCE: This study provides insight into the impact of lockdown and highlights the importance of reestablishing oral oncology-related patient care. A vital discussion is also provided on useful compensatory strategies that may reduce delays during the ongoing crisis. How to cite this article: Panta P, Reddy P, Misra SR, et al. Impact of COVID-19 Lockdown on Oral Oncology-related Outpatient Volume at Indian Dental Institutions. J Contemp Dent Pract 2021;22(5):501-505.


Assuntos
COVID-19 , Pacientes Ambulatoriais , Controle de Doenças Transmissíveis , Humanos , Estudos Retrospectivos , SARS-CoV-2
8.
J Mol Cell Cardiol ; 117: 1-18, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29470978

RESUMO

The shortening of sarcomeres that co-ordinates the pump function of the heart is stimulated by electrically-mediated increases in [Ca2+]. This process of excitation-contraction coupling (ECC) is subject to modulation by neurohormonal mediators that tune the output of the heart to meet the needs of the organism. Endothelin-1 (ET-1) is a potent modulator of cardiac function with effects on contraction amplitude, chronotropy and automaticity. The actions of ET-1 are evident during normal adaptive physiological responses and increased under pathophysiological conditions, such as following myocardial infarction and during heart failure, where ET-1 levels are elevated. In myocytes, ET-1 acts through ETA- or ETB-G protein-coupled receptors (GPCRs). Although well studied in atrial myocytes, the influence and mechanisms of action of ET-1 upon ECC in ventricular myocytes are not fully resolved. We show in rat ventricular myocytes that ET-1 elicits a biphasic effect on fractional shortening (initial transient negative and sustained positive inotropy) and increases the peak amplitude of systolic Ca2+ transients in adult rat ventricular myocytes. The negative inotropic phase was ETB receptor-dependent, whereas the positive inotropic response and increase in peak amplitude of systolic Ca2+ transients required ETA receptor engagement. Both effects of ET-1 required phospholipase C (PLC)-activity, although distinct signalling pathways downstream of PLC elicited the effects of each ET receptor. The negative inotropic response involved inositol 1,4,5-trisphosphate (InsP3) signalling and protein kinase C epsilon (PKCε). The positive inotropic action and the enhancement in Ca2+ transient amplitude induced by ET-1 were independent of InsP3 signalling, but suppressed by PKCε. Serine 302 in cardiac myosin binding protein-C was identified as a PKCε substrate that when phosphorylated contributed to the suppression of contraction and Ca2+ transients by PKCε following ET-1 stimulation. Thus, our data provide a new role and mechanism of action for InsP3 and PKCε in mediating the negative inotropic response and in restraining the positive inotropy and enhancement in Ca2+ transients following ET-1 stimulation.


Assuntos
Proteínas de Transporte/metabolismo , Endotelina-1/farmacologia , Ventrículos do Coração/citologia , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Proteína Quinase C-épsilon/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cardiotônicos/farmacologia , Citosol/metabolismo , Acoplamento Excitação-Contração/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteína Quinase C-épsilon/antagonistas & inibidores , Ratos Wistar , Receptores de Endotelina/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Fosfolipases Tipo C/metabolismo
9.
Proc Natl Acad Sci U S A ; 112(45): 13970-5, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26483466

RESUMO

Phenotypic plasticity is important in adaptation and shapes the evolution of organisms. However, we understand little about what aspects of the genome are important in facilitating plasticity. Eusocial insect societies produce plastic phenotypes from the same genome, as reproductives (queens) and nonreproductives (workers). The greatest plasticity is found in the simple eusocial insect societies in which individuals retain the ability to switch between reproductive and nonreproductive phenotypes as adults. We lack comprehensive data on the molecular basis of plastic phenotypes. Here, we sequenced genomes, microRNAs (miRNAs), and multiple transcriptomes and methylomes from individual brains in a wasp (Polistes canadensis) and an ant (Dinoponera quadriceps) that live in simple eusocial societies. In both species, we found few differences between phenotypes at the transcriptional level, with little functional specialization, and no evidence that phenotype-specific gene expression is driven by DNA methylation or miRNAs. Instead, phenotypic differentiation was defined more subtly by nonrandom transcriptional network organization, with roles in these networks for both conserved and taxon-restricted genes. The general lack of highly methylated regions or methylome patterning in both species may be an important mechanism for achieving plasticity among phenotypes during adulthood. These findings define previously unidentified hypotheses on the genomic processes that facilitate plasticity and suggest that the molecular hallmarks of social behavior are likely to differ with the level of social complexity.


Assuntos
Formigas/genética , Regulação da Expressão Gênica/genética , Hierarquia Social , Modelos Genéticos , Fenótipo , Comportamento Social , Vespas/genética , Animais , Formigas/fisiologia , Sequência de Bases , Encéfalo/metabolismo , Metilação de DNA/genética , Genoma de Inseto/genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Dados de Sequência Molecular , Transcriptoma/genética , Vespas/fisiologia
10.
J Clin Microbiol ; 51(3): 820-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23269742

RESUMO

The introduction of the 7-valent pneumococcal conjugate vaccine (PCV7) in September 2006 has markedly reduced the burden of invasive pneumococcal disease (IPD) including meningitis in England and Wales. This study examined changes in the molecular epidemiology of pneumococcal isolates causing meningitis from July 2004 to June 2009. The Health Protection Agency conducts enhanced pneumococcal surveillance in England and Wales. In addition to serotyping, pneumococcal isolates causing meningitis were genotyped by multilocus sequence typing (MLST). A total of 1,030 isolates were both serotyped and genotyped over the 5-year period. Fifty-two serotypes, 238 sequence types (STs), and 87 clonal complexes were identified, with no significant difference in the yearly Simpson's diversity index values (range, 0.974 to 0.984). STs commonly associated with PCV7 serotypes declined following PCV implementation, with a proportionally greater decline in ST124 (commonly associated with serotype 14). No other ST showed significant changes in distribution, even within individual serotypes. Replacement disease following PCV7 introduction was mainly due to serotypes 1, 3, 7F, 19A, 22F, and 33F through clonal expansion. A single instance of possible capsule switching was identified where one ST4327 clone expressed a serotype 14 capsule in 2005 and a serotype 28A capsule in 2009. In 2008 to 2009, ST191 (7F) became the most prevalent clone causing meningitis (10.3%). Case fatality (145 fatalities/1,030 cases; 14.1%) was high across all age groups and serotype groups. Thus, the introduction of PCV7 resulted in an increase in non-PCV7 serotypes, including some not covered by the 13-valent vaccine, such as serotypes 22F and 33F, emphasizing the importance of long-term epidemiological and molecular surveillance.


Assuntos
Meningite Pneumocócica/epidemiologia , Meningite Pneumocócica/microbiologia , Vacinas Pneumocócicas/administração & dosagem , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Inglaterra/epidemiologia , Feminino , Genótipo , Vacina Pneumocócica Conjugada Heptavalente , Humanos , Lactente , Recém-Nascido , Masculino , Meningite Pneumocócica/mortalidade , Meningite Pneumocócica/prevenção & controle , Pessoa de Meia-Idade , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Prevalência , Sorotipagem , Streptococcus pneumoniae/isolamento & purificação , Análise de Sobrevida , País de Gales/epidemiologia , Adulto Jovem
11.
Blood ; 118(4): 1087-98, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21490342

RESUMO

Neutrophils form a vital part of the innate immune response, but at the same time their inappropriate activation contributes to autoimmune diseases. Many molecular components are involved in fine-tuning neutrophil function. We report here the first characterization of the role of ARAP3, a PI3K and Rap-regulated GTPase-activating protein for RhoA and Arf6 in murine neutrophils. We show that neutrophils lacking ARAP3 are preactivated in vitro and in vivo, exhibiting increased ß2 integrin affinity and avidity. ARAP3-deficient neutrophils are hyperresponsive in several adhesion-dependent situations in vitro, including the formation of reactive oxygen species, adhesion, spreading, and granule release. ARAP3-deficient cells adhere more firmly under flow conditions in vitro and to the vessel wall in vivo. Finally, loss of ARAP3 interferes with integrin-dependent neutrophil chemotaxis. The results of the present study suggest an important function of ARAP3 downstream of Rap. By modulating ß2 integrin activity, ARAP3 guards neutrophils in their quiescent state unless activated.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quimiotaxia de Leucócito/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Neutrófilos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Adesão Celular/fisiologia , Feminino , Proteínas Ativadoras de GTPase/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/imunologia
12.
Animals (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889834

RESUMO

Parasites are generally overdispersed among their hosts, with far-reaching implications for their population dynamics and control. The factors determining parasite overdispersion have long been debated. In particular, stochastic parasite acquisition and individual host variation in density-dependent regulation through acquired host immunity have been identified as key factors, but their relative roles and possible interactions have seen little empirical exploration in parasite populations. Here, Taylor's power law is applied to test the hypothesis that periodic parasite removal destabilises the host-parasite relationship and increases variance in parasite burden around the mean. The slope of the power relationship was compared by analysis of covariance among 325 nematode populations in wild and domestic ruminants, exploiting that domestic ruminants are often routinely treated against parasite infections. In Haemonchus spp. and Trichostrongylus axei in domestic livestock, the slope increased with the frequency of anthelmintic treatment, supporting this hypothesis. In Nematodirus spp., against which acquired immunity is known to be strong, the slope was significantly greater in post-mortem worm burden data than in faecal egg counts, while this relationship did not hold for the less immunogenic genus Marshallagia. Considered together, these findings suggest that immunity acting through an exposure-dependent reduction in parasite fecundity stabilises variance in faecal egg counts, reducing overdispersion, and that periodic anthelmintic treatment interferes with this process and increases overdispersion. The results have implications for the diagnosis and control of parasitic infections in domestic animals, which are complicated by overdispersion, and for our understanding of parasite distribution in free-living wildlife. Parasite-host systems, in which treatment and immunity effectively mimic metapopulation processes of patch extinction and density dependence, could also yield general insights into the spatio-temporal stability of animal distributions.

13.
Front Immunol ; 14: 1180886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383235

RESUMO

Introduction: Rac-GTPases and their Rac-GEF activators play important roles in neutrophil-mediated host defence. These proteins control the adhesion molecules and cytoskeletal dynamics required for neutrophil recruitment to inflamed and infected organs, and the neutrophil effector responses that kill pathogens. Methods: Here, we used live cell TIRF-FRET imaging in neutrophils from Rac-FRET reporter mice with deficiencies in the Rac-GEFs Dock2, Tiam1 or Prex1/Vav1 to evaluate if these proteins activate spatiotemporally distinct pools of Rac, and to correlate patterns of Rac activity with the neutrophil responses they control. Results: All the GEFs were required for neutrophil adhesion, and Prex1/Vav1 were important during spreading and for the velocity of migration during chemotaxis. However, Dock2 emerged as the prominent regulator of neutrophil responses, as this GEF was required for neutrophil polarisation and random migration, for migration velocity during chemokinesis, for the likelihood to migrate and for the speed of migration and of turning during chemotaxis, as well as for rapid particle engulfment during phagocytosis. We identified characteristic spatiotemporal patterns of Rac activity generated by Dock2 which correlate with the importance of the Rac-GEF in these neutrophil responses. We also demonstrate a requirement for Dock2 in neutrophil recruitment during aseptic peritonitis. Discussion: Collectively, our data provide a first direct comparison of the pools of Rac activity generated by different types of Rac-GEFs, and identify Dock2 as a key regulator of polarisation, migration and phagocytosis in primary neutrophils.


Assuntos
Proteínas Ativadoras de GTPase , Fatores de Troca do Nucleotídeo Guanina , Neutrófilos , Fagocitose , Animais , Camundongos , Quimiotaxia , Citoesqueleto , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Ativadoras de GTPase/metabolismo
14.
Cell Rep ; 42(9): 113074, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676766

RESUMO

To produce a diverse antibody repertoire, immunoglobulin heavy-chain (Igh) loci undergo large-scale alterations in structure to facilitate juxtaposition and recombination of spatially separated variable (VH), diversity (DH), and joining (JH) genes. These chromosomal alterations are poorly understood. Uncovering their patterns shows how chromosome dynamics underpins antibody diversity. Using tiled Capture Hi-C, we produce a comprehensive map of chromatin interactions throughout the 2.8-Mb Igh locus in progenitor B cells. We find that the Igh locus folds into semi-rigid subdomains and undergoes flexible looping of the VH genes to its 3' end, reconciling two views of locus organization. Deconvolution of single Igh locus conformations using polymer simulations identifies thousands of different structures. This heterogeneity may underpin the diversity of V(D)J recombination events. All three immunoglobulin loci also participate in a highly specific, developmentally regulated network of interchromosomal interactions with genes encoding B cell-lineage factors. This suggests a model of interchromosomal coordination of B cell development.


Assuntos
Linfócitos B , Imunoglobulinas , Recombinação V(D)J/genética , Genes de Cadeia Pesada de Imunoglobulina/genética , Células Precursoras de Linfócitos B
15.
Front Immunol ; 14: 1223653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077328

RESUMO

Rac GTPases are required for neutrophil adhesion and migration, and for the neutrophil effector responses that kill pathogens. These Rac-dependent functions are impaired when neutrophils lack the activators of Rac, Rac-GEFs from the Prex, Vav, and Dock families. In this study, we demonstrate that Tiam1 is also expressed in neutrophils, governing focal complexes, actin cytoskeletal dynamics, polarisation, and migration, in a manner depending on the integrin ligand to which the cells adhere. Tiam1 is dispensable for the generation of reactive oxygen species but mediates degranulation and NETs release in adherent neutrophils, as well as the killing of bacteria. In vivo, Tiam1 is required for neutrophil recruitment during aseptic peritonitis and for the clearance of Streptococcus pneumoniae during pulmonary infection. However, Tiam1 functions differently to other Rac-GEFs. Instead of promoting neutrophil adhesion to ICAM1 and stimulating ß2 integrin activity as could be expected, Tiam1 restricts these processes. In accordance with these paradoxical inhibitory roles, Tiam1 limits the fMLP-stimulated activation of Rac1 and Rac2 in adherent neutrophils, rather than activating Rac as expected. Tiam1 promotes the expression of several regulators of small GTPases and cytoskeletal dynamics, including αPix, Psd4, Rasa3, and Tiam2. It also controls the association of Rasa3, and potentially αPix, Git2, Psd4, and 14-3-3ζ/δ, with Rac. We propose these latter roles of Tiam1 underlie its effects on Rac and ß2 integrin activity and on cell responses. Hence, Tiam1 is a novel regulator of Rac-dependent neutrophil responses that functions differently to other known neutrophil Rac-GEFs.


Assuntos
Integrinas , Neutrófilos , Humanos , Neutrófilos/metabolismo , Integrinas/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas 14-3-3/metabolismo , Antígenos CD18/metabolismo
16.
Proc Natl Acad Sci U S A ; 106(14): 5795-800, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19297623

RESUMO

The mechanisms that regulate NK cell trafficking are unclear. Phosphoinositide-3 kinases (PI3K) control cell motility and the p110gamma and p110delta isoforms are mostly expressed in leukocytes, where they transduce signals downstream of G protein coupled receptors (GPCR) or tyrosine kinase receptors, respectively. Here, we set out to determine the relative contribution of p110gamma and p110delta to NK cell migration in mice. Using a combination of single-cell imaging analysis of transgenic cells reporting on PI3K activity in real time and small molecule inhibitors of p110gamma and p110delta, we show here that the tyrosine-kinase coupled p110delta is linked to GPCR signaling and, depending on the GPCR, may even be preferentially activated over p110gamma. Using gene-targeted mice, we showed that both isoforms were essential for NK cell chemotaxis to CXCL12 and to CCL3 and, in vivo, for normal NK cell migration during pregnancy and to the inflamed peritoneum. By contrast, only p110delta was indispensable for chemotaxis to S1P and CXCL10 and for NK cell distribution throughout lymphoid and nonlymphoid tissues and for extravasation to tumors. These results implicate p110delta downstream of GPCRs in NK cells and highlight its nonredundant role as a key regulator of NK cell trafficking in health and disease.


Assuntos
Quimiotaxia de Leucócito/imunologia , Células Matadoras Naturais/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Animais , Quimiocina CCL3 , Quimiocina CXCL10 , Quimiocina CXCL12 , Classe I de Fosfatidilinositol 3-Quinases , Modelos Animais de Doenças , Feminino , Inflamação , Neoplasias Hepáticas , Camundongos , Camundongos Knockout , Peritônio/patologia , Gravidez , Receptores Acoplados a Proteínas G/metabolismo
17.
NAR Cancer ; 4(4): zcac032, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36267209

RESUMO

Mutations and gene amplifications that confer drug resistance emerge frequently during chemotherapy, but their mechanism and timing are poorly understood. Here, we investigate BRAFV600E amplification events that underlie resistance to the MEK inhibitor selumetinib (AZD6244/ARRY-142886) in COLO205 cells, a well-characterized model for reproducible emergence of drug resistance, and show that BRAF amplifications acquired de novo are the primary cause of resistance. Selumetinib causes long-term G1 arrest accompanied by reduced expression of DNA replication and repair genes, but cells stochastically re-enter the cell cycle during treatment despite continued repression of pERK1/2. Most DNA replication and repair genes are re-expressed as cells enter S and G2; however, mRNAs encoding a subset of factors important for error-free replication and chromosome segregation, including TIPIN, PLK2 and PLK3, remain at low abundance. This suggests that DNA replication following escape from G1 arrest in drug is more error prone and provides a potential explanation for the DNA damage observed under long-term RAF-MEK-ERK1/2 pathway inhibition. To test the hypothesis that escape from G1 arrest in drug promotes de novo BRAF amplification, we exploited the combination of palbociclib and selumetinib. Combined treatment with selumetinib and a dose of palbociclib sufficient to reinforce G1 arrest in selumetinib-sensitive cells, but not to impair proliferation of resistant cells, delays the emergence of resistant colonies, meaning that escape from G1 arrest is critical in the formation of resistant clones. Our findings demonstrate that acquisition of MEK inhibitor resistance often occurs through de novo gene amplification and can be suppressed by impeding cell cycle entry in drug.

18.
iScience ; 25(1): 103663, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35036864

RESUMO

We design a "wisdom-of-the-crowds" GRN inference pipeline and couple it to complex network analysis to understand the organizational principles governing gene regulation in long-lived glp-1/Notch Caenorhabditis elegans. The GRN has three layers (input, core, and output) and is topologically equivalent to bow-tie/hourglass structures prevalent among metabolic networks. To assess the functional importance of structural layers, we screened 80% of regulators and discovered 50 new aging genes, 86% with human orthologues. Genes essential for longevity-including ones involved in insulin-like signaling (ILS)-are at the core, indicating that GRN's structure is predictive of functionality. We used in vivo reporters and a novel functional network covering 5,497 genetic interactions to make mechanistic predictions. We used genetic epistasis to test some of these predictions, uncovering a novel transcriptional regulator, sup-37, that works alongside DAF-16/FOXO. We present a framework with predictive power that can accelerate discovery in C. elegans and potentially humans.

19.
Front Immunol ; 13: 888415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090969

RESUMO

Host defense against bacterial and fungal infections diminishes with age. In humans, impaired neutrophil responses are thought to contribute to this decline. However, it remains unclear whether neutrophil responses are also impaired in old mice. Here, we investigated neutrophil function in old mice, focusing on responses primed by lipopolysaccharide (LPS), an endotoxin released by gram-negative bacteria like E. coli, which signals through toll-like receptor (TLR) 4. We show that old mice have a reduced capacity to clear pathogenic E. coli during septic peritonitis. Neutrophil recruitment was elevated during LPS-induced but not aseptic peritonitis. Neutrophils from old mice showed reduced killing of E. coli. Their reactive oxygen species (ROS) production was impaired upon priming with LPS but not with GM-CSF/TNFα. Phagocytosis and degranulation were reduced in a partially LPS-dependent manner, whereas impairment of NET release in response to S. aureus was independent of LPS. Unexpectedly, chemotaxis was normal, as were Rac1 and Rac2 GTPase activities. LPS-primed activation of Erk and p38 Mapk was defective. PIP3 production was reduced upon priming with LPS but not with GM-CSF/TNFα, whereas PIP2 levels were constitutively low. The expression of 5% of neutrophil proteins was dysregulated in old age. Granule proteins, particularly cathepsins and serpins, as well as TLR-pathway proteins and membrane receptors were upregulated, whereas chromatin and RNA regulators were downregulated. The upregulation of CD180 and downregulation of MyD88 likely contribute to the impaired LPS signaling. In summary, all major neutrophil responses except chemotaxis decline with age in mice, particularly upon LPS priming. This LPS/TLR4 pathway dependence resolves previous controversy regarding effects of age on murine neutrophils and confirms that mice are an appropriate model for the decline in human neutrophil function.


Assuntos
Infecções Bacterianas , Peritonite , Animais , Infecções Bacterianas/metabolismo , Escherichia coli/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Neutrófilos/metabolismo , Peritonite/metabolismo , Staphylococcus aureus/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Proc Natl Acad Sci U S A ; 105(11): 4483-8, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18334636

RESUMO

The small GTPase Rac controls cell morphology, gene expression, and reactive oxygen species formation. Manipulations of Rac activity levels in the cerebellum result in motor coordination defects, but activators of Rac in the cerebellum are unknown. P-Rex family guanine-nucleotide exchange factors activate Rac. We show here that, whereas P-Rex1 expression within the brain is widespread, P-Rex2 is specifically expressed in the Purkinje neurons of the cerebellum. We have generated P-Rex2(-/-) and P-Rex1(-/-)/P-Rex2(-/-) mice, analyzed their Purkinje cell morphology, and assessed their motor functions in behavior tests. The main dendrite is thinned in Purkinje cells of P-Rex2(-/-) pups and dendrite structure appears disordered in Purkinje cells of adult P-Rex2(-/-) and P-Rex1(-/-)/P-Rex2(-/-) mice. P-Rex2(-/-) mice show a mild motor coordination defect that progressively worsens with age and is more pronounced in females than in males. P-Rex1(-/-)/P-Rex2(-/-) mice are ataxic, with reduced basic motor activity and abnormal posture and gait, as well as impaired motor coordination even at a young age. We conclude that P-Rex1 and P-Rex2 are important regulators of Purkinje cell morphology and cerebellar function.


Assuntos
Dendritos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Atividade Motora , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Envelhecimento/fisiologia , Animais , Comportamento Animal , Encéfalo/metabolismo , Fertilidade , Proteínas Ativadoras de GTPase/deficiência , Proteínas Ativadoras de GTPase/genética , Saúde , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA