Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 242(4): 1676-1690, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38148573

RESUMO

Soil fungi belonging to different functional guilds, such as saprotrophs, pathogens, and mycorrhizal symbionts, play key roles in forest ecosystems. To date, no study has compared the actual gene expression of these guilds in different forest soils. We used metatranscriptomics to study the competition for organic resources by these fungal groups in boreal, temperate, and Mediterranean forest soils. Using a dedicated mRNA annotation pipeline combined with the JGI MycoCosm database, we compared the transcripts of these three fungal guilds, targeting enzymes involved in C- and N mobilization from plant and microbial cell walls. Genes encoding enzymes involved in the degradation of plant cell walls were expressed at a higher level in saprotrophic fungi than in ectomycorrhizal and pathogenic fungi. However, ectomycorrhizal and saprotrophic fungi showed similarly high expression levels of genes encoding enzymes involved in fungal cell wall degradation. Transcripts for N-related transporters were more highly expressed in ectomycorrhizal fungi than in other groups. We showed that ectomycorrhizal and saprotrophic fungi compete for N in soil organic matter, suggesting that their interactions could decelerate C cycling. Metatranscriptomics provides a unique tool to test controversial ecological hypotheses and to better understand the underlying ecological processes involved in soil functioning and carbon stabilization.


Assuntos
Florestas , Fungos , Microbiologia do Solo , Transcriptoma , Fungos/genética , Fungos/fisiologia , Transcriptoma/genética , Micorrizas/fisiologia , Micorrizas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Nitrogênio/metabolismo , Solo/química , Ecossistema , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Plant Physiol ; 194(1): 243-257, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37399189

RESUMO

Plant lignocellulosic biomass, i.e. secondary cell walls of plants, is a vital alternative source for bioenergy. However, the acetylation of xylan in secondary cell walls impedes the conversion of biomass to biofuels. Previous studies have shown that REDUCED WALL ACETYLATION (RWA) proteins are directly involved in the acetylation of xylan but the regulatory mechanism of RWAs is not fully understood. In this study, we demonstrate that overexpression of a Populus trichocarpa PtRWA-C gene increases the level of xylan acetylation and increases the lignin content and S/G ratio, ultimately yielding poplar woody biomass with reduced saccharification efficiency. Furthermore, through gene coexpression network and expression quantitative trait loci (eQTL) analysis, we found that PtRWA-C was regulated not only by the secondary cell wall hierarchical regulatory network but also by an AP2 family transcription factor HARDY (HRD). Specifically, HRD activates PtRWA-C expression by directly binding to the PtRWA-C promoter, which is also the cis-eQTL for PtRWA-C. Taken together, our findings provide insights into the functional roles of PtRWA-C in xylan acetylation and consequently saccharification and shed light on synthetic biology approaches to manipulate this gene and alter cell wall properties. These findings have substantial implications for genetic engineering of woody species, which could be used as a sustainable source of biofuels, valuable biochemicals, and biomaterials.


Assuntos
Populus , Populus/genética , Populus/metabolismo , Xilanos/metabolismo , Acetilação , Biomassa , Biocombustíveis/análise , Plantas/metabolismo , Parede Celular/metabolismo , Lignina/metabolismo
3.
BMC Plant Biol ; 23(1): 123, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869316

RESUMO

BACKGROUND: Emerald ash borer (Agrilus planipennis; EAB) is an Asian insect species that has been invasive to North America for 20 years. During this time, the emerald ash borer has killed tens of millions of American ash (Fraxinus spp) trees. Understanding the inherent defenses of susceptible American ash trees will provide information to breed new resistant varieties of ash trees. RESULTS: We have performed RNA-seq on naturally infested green ash (F. pennsylvanica) trees at low, medium and high levels of increasing EAB infestation and proteomics on low and high levels of EAB infestation. Most significant transcript changes we detected occurred between the comparison of medium and high levels of EAB infestation, indicating that the tree is not responding to EAB until it is highly infested. Our integrative analysis of the RNA-Seq and proteomics data identified 14 proteins and 4 transcripts that contribute most to the difference between highly infested and low infested trees. CONCLUSIONS: The putative functions of these transcripts and proteins suggests roles of phenylpropanoid biosynthesis and oxidation, chitinase activity, pectinesterase activity, strigolactone signaling, and protein turnover.


Assuntos
Besouros , Fraxinus , Animais , Floema , Melhoramento Vegetal , América do Norte , Árvores
4.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33097512

RESUMO

Rhizodegradation is a promising cleanup technology where microorganisms degrade soil contaminants in the rhizosphere. A symbiotic relationship is expected to occur between plant roots and soil microorganisms in contaminated soils that enhances natural microbial degradation. However, little is known about how different initial microbiotas influence the rhizodegradation outcome. Recent studies have hinted that soil initial diversity has a determining effect on the outcome of contaminant degradation. To test this, we either planted (P) or not (NP) balsam poplars (Populus balsamifera) in two soils of contrasting diversity (agricultural and forest) that were contaminated or not with 50 mg kg-1 of phenanthrene (PHE). The DNA from the rhizosphere of the P and the bulk soil of the NP pots was extracted and the bacterial genes encoding the 16S rRNA, the PAH ring-hydroxylating dioxygenase alpha subunits (PAH-RHDα) of Gram-positive and Gram-negative bacteria, and the fungal ITS region were sequenced to characterize the microbial communities. The abundances of the PAH-RHDα genes were quantified by real-time quantitative PCR. Plant presence had a significant effect on PHE degradation only in the forest soil, whereas both NP and P agricultural soils degraded the same amount of PHE. Fungal communities were mainly affected by plant presence, whereas bacterial communities were principally affected by the soil type, and upon contamination the dominant PAH-degrading community was similarly constrained by soil type. Our results highlight the crucial importance of soil microbial and physicochemical characteristics in the outcome of rhizoremediation.IMPORTANCE Polycyclic aromatic hydrocarbons (PAH) are a group of organic contaminants that pose a risk to ecosystems' health. Phytoremediation is a promising biotechnology with the potential to restore PAH-contaminated soils. However, some limitations prevent it from becoming the remediation technology of reference, despite being environmentally friendlier than mainstream physicochemical alternatives. Recent reports suggest that the original soil microbial diversity is the key to harnessing the potential of phytoremediation. Therefore, this study focused on determining the effect of two different soil types in the fate of phenanthrene (a polycyclic aromatic hydrocarbon) under balsam poplar remediation. Poplar increased the degradation of phenanthrene in forest, but not in agricultural soil. The fungi were affected by poplars, whereas total bacteria and specific PAH-degrading bacteria were constrained by soil type, leading to different degradation patterns between soils. These results highlight the importance of performing preliminary microbiological studies of contaminated soils to determine whether plant presence could improve remediation rates or not.


Assuntos
Fenantrenos/metabolismo , Populus , Rizosfera , Microbiologia do Solo , Poluentes do Solo/metabolismo , Agricultura , Bactérias/genética , Biodegradação Ambiental , Florestas , Fungos/genética , Microbiota/genética , RNA Ribossômico 16S/genética , Solo/química
5.
Plant Physiol ; 174(1): 154-171, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28348066

RESUMO

The accumulation of proanthocyanidins is regulated by a complex of transcription factors composed of R2R3 MYB, basic helix-loop-helix, and WD40 proteins that activate the promoters of biosynthetic genes. In poplar (genus Populus), MYB134 is known to regulate proanthocyanidin biosynthesis by activating key flavonoid genes. Here, we characterize a second MYB regulator of proanthocyanidins, MYB115. Transgenic poplar overexpressing MYB115 showed a high-proanthocyanidin phenotype and reduced salicinoid accumulation, similar to the effects of MYB134 overexpression. Transcriptomic analysis of MYB115- and MYB134-overexpressing poplar plants identified a set of common up-regulated genes encoding proanthocyanidin biosynthetic enzymes and several novel uncharacterized MYB transcriptional repressors. Transient expression experiments demonstrated the capacity of both MYB134 and MYB115 to activate flavonoid promoters, but only in the presence of a basic helix-loop-helix cofactor. Yeast two-hybrid experiments confirmed the direct interaction of these transcription factors. The unexpected identification of dihydromyricetin in leaf extracts of both MYB115- and MYB134-overexpressing poplar led to the discovery of enhanced flavonoid B-ring hydroxylation and an increased proportion of prodelphinidins in proanthocyanidin of the transgenics. The dramatic hydroxylation phenotype of MYB115 overexpressors is likely due to the up-regulation of both flavonoid 3',5'-hydroxylases and cytochrome b5 Overall, this work provides new insight into the complexity of the gene regulatory network for proanthocyanidin synthesis in poplar.


Assuntos
Proteínas de Plantas/metabolismo , Populus/metabolismo , Proantocianidinas/biossíntese , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Populus/citologia , Populus/genética , Ligação Proteica , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
6.
J Exp Bot ; 65(9): 2319-33, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24713992

RESUMO

This research aimed to investigate the role of diverse transcription factors (TFs) and to delineate gene regulatory networks directly in conifers at a relatively high-throughput level. The approach integrated sequence analyses, transcript profiling, and development of a conifer-specific activation assay. Transcript accumulation profiles of 102 TFs and potential target genes were clustered to identify groups of coordinately expressed genes. Several different patterns of transcript accumulation were observed by profiling in nine different organs and tissues: 27 genes were preferential to secondary xylem both in stems and roots, and other genes were preferential to phelloderm and periderm or were more ubiquitous. A robust system has been established as a screening approach to define which TFs have the ability to regulate a given promoter in planta. Trans-activation or repression effects were observed in 30% of TF-candidate gene promoter combinations. As a proof of concept, phylogenetic analysis and expression and trans-activation data were used to demonstrate that two spruce NAC-domain proteins most likely play key roles in secondary vascular growth as observed in other plant species. This study tested many TFs from diverse families in a conifer tree species, which broadens the knowledge of promoter-TF interactions in wood development and enables comparisons of gene regulatory networks found in angiosperms and gymnosperms.


Assuntos
Redes Reguladoras de Genes , Picea/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Xilema/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Picea/crescimento & desenvolvimento , Picea/metabolismo , Proteínas de Plantas/genética , Ligação Proteica , Fatores de Transcrição/genética , Xilema/genética , Xilema/metabolismo
7.
J Exp Bot ; 65(2): 495-508, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24336492

RESUMO

Redundancy and competition between R2R3-MYB activators and repressors on common target genes has been proposed as a fine-tuning mechanism for the regulation of plant secondary metabolism. This hypothesis was tested in white spruce [Picea glauca (Moench) Voss] by investigating the effects of R2R3-MYBs from different subgroups on common targets from distinct metabolic pathways. Comparative analysis of transcript profiling data in spruces overexpressing R2R3-MYBs from loblolly pine (Pinus taeda L.), PtMYB1, PtMYB8, and PtMYB14, defined a set of common genes that display opposite regulation effects. The relationship between the closest MYB homologues and 33 putative target genes was explored by quantitative PCR expression profiling in wild-type P. glauca plants during the diurnal cycle. Significant Spearman's correlation estimates were consistent with the proposed opposite effect of different R2R3-MYBs on several putative target genes in a time-related and tissue-preferential manner. Expression of sequences coding for 4CL, DHS2, COMT1, SHM4, and a lipase thio/esterase positively correlated with that of PgMYB1 and PgMYB8, but negatively with that of PgMYB14 and PgMYB15. Complementary electrophoretic mobility shift assay (EMSA) and transactivation assay provided experimental evidence that these different R2R3-MYBs are able to bind similar AC cis-elements in the promoter region of Pg4CL and PgDHS2 genes but have opposite effects on their expression. Competitive binding EMSA experiments showed that PgMYB8 competes more strongly than PgMYB15 for the AC-I MYB binding site in the Pg4CL promoter. Together, the results bring a new perspective to the action of R2R3-MYB proteins in the regulation of distinct but interconnecting metabolism pathways.


Assuntos
Vias Biossintéticas , Genes de Plantas/genética , Lignina/metabolismo , Picea/genética , Picea/metabolismo , Proteínas de Plantas/metabolismo , Ácido Chiquímico/metabolismo , Sequência de Bases , Vias Biossintéticas/genética , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Pinus/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas , Fatores de Tempo , Ativação Transcricional/genética
8.
Plant Biotechnol J ; 11(7): 785-98, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23915092

RESUMO

Forests are vital to the world's ecological, social, cultural and economic well-being yet sustainable provision of goods and services from forests is increasingly challenged by pressures such as growing demand for wood and other forest products, land conversion and degradation, and climate change. Intensively managed, highly productive forestry incorporating the most advanced methods for tree breeding, including the application of genetic engineering (GE), has tremendous potential for producing more wood on less land. However, the deployment of GE trees in plantation forests is a controversial topic and concerns have been particularly expressed about potential harms to the environment. This paper, prepared by an international group of experts in silviculture, forest tree breeding, forest biotechnology and environmental risk assessment (ERA) that met in April 2012, examines how the ERA paradigm used for GE crop plants may be applied to GE trees for use in plantation forests. It emphasizes the importance of differentiating between ERA for confined field trials of GE trees, and ERA for unconfined or commercial-scale releases. In the case of the latter, particular attention is paid to characteristics of forest trees that distinguish them from shorter-lived plant species, the temporal and spatial scale of forests, and the biodiversity of the plantation forest as a receiving environment.


Assuntos
Plantas Geneticamente Modificadas , Árvores , Biodiversidade , Conservação dos Recursos Naturais , Meio Ambiente , Medição de Risco
9.
Front Microbiol ; 14: 1168653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465026

RESUMO

The oil sands mining operations in Alberta have produced billions of m3 of tailings which must be reclaimed and integrated into various mine closure landforms, including terrestrial landforms. Microorganisms play a central role in nutrient cycling during the reclamation of disturbed landscapes, contributing to successful vegetation restoration and long-term sustainability. However, microbial community succession and response in reconstructed and revegetated tailings remain largely unexplored. This study aimed to monitor the structural and functional responses of microbial communities in tailings subjected to different capping and vegetation strategies over two growing seasons (GS). To achieve this, a column-based greenhouse experiment was conducted to investigate microbial communities in tailings that were capped with a layer (10 or 30 cm) of peat-mineral mix (PMM) and planted with either upland or wetland communities. DNA metabarcoding analysis of the bacterial 16S rRNA gene and fungal ITS2 region as well as shotgun metagenomics were used to asses the impact of treatments on microbial taxonomy and functions, respectively. Results showed that tailings microbial diversity and community composition changed considerably after two GS compared to baseline samples, while communities in the PMM capping layer were much more stable. Likewise, several microbial functions were significantly enriched in tailings after two GS. Interestingly, the impact of capping on bacterial communities in tailings varied depending on the plant community, leading to a higher number of differentially abundant taxa and to a decrease in Shannon diversity and evenness in the upland treatment but not in the wetland treatment. Moreover, while capping in the presence of wetland vegetation increased the energy-related metabolic functions (carbon, nitrogen, and sulfur), these functions were depleted by capping in the upland treatment. Fungi represented a small proportion of the microbial community in tailings, but the relative abundance of several taxa changed over time, while the capping treatments favored the growth of some beneficial taxa, notably the root endophyte Serendipita, in both upland and wetland columns. The results suggest that selecting the right combination of capping material and vegetation type may contribute to improve below-ground microbial processes and sustain plant growth in harsh environments such as oil sands tailings.

10.
PLoS One ; 18(10): e0292227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37878639

RESUMO

The aim of this study was to determine whether the soil faunal-microbial interaction complexity (SFMIC) is a significant factor influencing the soil microbial communities and the willow growth in the context of PAH contamination. The SFMIC treatment had eight levels: just the microbial community, or the microbial community with nematodes, springtails, earthworms and all the possible combinations. SFMIC affected the height and biomass of willows after eight weeks or growth. SFMIC affected the structure and the composition of the bacterial, archaeal and fungal communities, with significant effects of SFMIC on the relative abundance of fungal genera such as Sphaerosporella, a known willow symbiont during phytoremediation, and bacterial phyla such as Actinobacteriota, containing many polycyclic aromatic hydrocarbons (PAH) degraders. These SFMIC effects on microbial communities were not clearly reflected in the community structure and abundance of PAH degraders, even though some degraders related to Actinobacteriota and the diversity of Gram-negative degraders were affected by the SFMIC treatments. Over 95% of PAH was degraded in all pots at the end of the experiment. Overall, our results suggest that, under our experimental conditions, SFMIC changes willow phytoremediation outcomes.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo/química , Poluentes do Solo/análise , Microbiologia do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Bactérias , Biodegradação Ambiental , Interações Microbianas
11.
Front Plant Sci ; 14: 1122445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206972

RESUMO

Introduction: Reforestation of degraded lands in the boreal forest is challenging and depends on the direction and strength of the plant-soil feedback (PSF). Methods: Using a gradient in tree productivity (null, low and high) from a long-term, spatially replicated reforestation experiment of borrow pits in the boreal forest, we investigated the interplay between microbial communities and soil and tree nutrient stocks and concentrations in relation to a positive PSF induced by wood mulch amendment. Results: Three levels of mulch amendment underlie the observed gradient in tree productivity, and plots that had been amended with a continuous layer of mulch 17 years earlier showed a positive PSF with trees up to 6 m tall, a closed canopy, and a developing humus layer. The average taxonomic and functional composition of the bacterial and fungal communities differed markedly betweenlow- and high-productivity plots. Trees in high-productivity plots recruited a specialized soil microbiome that was more efficient at nutrient mobilization and acquisition. These plots showed increases in carbon (C), calcium (Ca), nitrogen (N), potassium (K), and phosphorus (P) stocks and as well as bacterial and fungal biomass. The soil microbiome was dominated by taxa from the fungal genus Cortinarius and the bacterial family Chitinophagaceae, and a complex microbial network with higher connectivity and more keystone species supported tree productivity in reforested plots compared to unproductive plots. Discussion: Therefore, mulching of plots resulted in a microbially mediated PSF that enhances mineral weathering and non-symbiotic N fixation, and in turn helps transform unproductive plots into productive plots to ensure rapid restoration of the forest ecosystem in a harsh boreal environment.

12.
Plant Physiol ; 157(4): 1677-95, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21994349

RESUMO

Diterpene resin acids (DRAs) are specialized (secondary) metabolites of the oleoresin defense of conifers produced by diterpene synthases and cytochrome P450s of the CYP720B family. The evolution of DRA metabolism shares common origins with the biosynthesis of ent-kaurenoic acid, which is highly conserved in general (primary) metabolism of gibberellin biosynthesis. Transcriptome mining in species of spruce (Picea) and pine (Pinus) revealed CYP720Bs of four distinct clades. We cloned a comprehensive set of 12 different Sitka spruce (Picea sitchensis) CYP720Bs as full-length cDNAs. Spatial expression profiles, methyl jasmonate induction, and transcript enrichment in terpenoid-producing resin ducts suggested a role of CYP720B4 in DRA biosynthesis. CYP720B4 was characterized as a multisubstrate, multifunctional enzyme by the formation of oxygenated diterpenoids in metabolically engineered yeast, yeast in vivo transformation of diterpene substrates, in vitro assays with CYP720B4 protein produced in Escherichia coli, and alteration of DRA profiles in RNA interference-suppressed spruce seedlings. CYP720B4 was active with 24 different diterpenoid substrates, catalyzing consecutive C-18 oxidations in the biosynthesis of an array of diterpene alcohols, aldehydes, and acids. CYP720B4 was most active in the formation of dehydroabietic acid, a compound associated with insect resistance of Sitka spruce. We identified patterns of convergent evolution of CYP720B4 in DRA metabolism and ent-kaurene oxidase CYP701 in gibberellin metabolism and revealed differences in the evolution of specialized and general diterpene metabolism in a gymnosperm. The genomic and functional characterization of the gymnosperm CYP720B family highlights that the evolution of specialized metabolism involves substantial diversification relative to conserved, general metabolism.


Assuntos
Evolução Biológica , Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/metabolismo , Picea/enzimologia , Pinus/enzimologia , Imunidade Vegetal , Animais , Sequência de Bases , Sistema Enzimático do Citocromo P-450/genética , DNA de Plantas/química , DNA de Plantas/genética , Diterpenos/química , Variação Genética , Dados de Sequência Molecular , Oxirredução , Floema/química , Filogenia , Picea/química , Picea/genética , Picea/imunologia , Pinus/genética , Casca de Planta/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resinas Vegetais/química , Resinas Vegetais/metabolismo , Plântula/química , Plântula/enzimologia , Plântula/genética , Análise de Sequência de DNA , Especificidade da Espécie , Especificidade por Substrato , Transcriptoma , Gorgulhos/fisiologia , Xilema/química
13.
Plant Physiol ; 157(3): 1379-93, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21873571

RESUMO

Mitogen-activated protein kinases (MAPKs) contribute to the establishment of plant disease resistance by regulating downstream signaling components, including transcription factors. In this study, we identified MAPK-interacting proteins, and among the newly discovered candidates was a Cys-2/His-2-type zinc finger protein named PtiZFP1. This putative transcription factor belongs to a family of transcriptional repressors that rely on an ERF-associated amphiphilic repression (EAR) motif for their repression activity. Amino acids located within this repression motif were also found to be essential for MAPK binding. Close examination of the primary protein sequence revealed a functional bipartite MAPK docking site that partially overlaps with the EAR motif. Transient expression assays in Arabidopsis (Arabidopsis thaliana) protoplasts suggest that MAPKs promote PtiZFP1 degradation through the 26S proteasome. Since features of the MAPK docking site are conserved among other EAR repressors, our study suggests a novel mode of defense mechanism regulation involving stress-responsive MAPKs and EAR repressors.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Populus/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Dedos de Zinco , Sequência de Aminoácidos , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Sítios de Ligação , Núcleo Celular/enzimologia , Sequência Conservada/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fosforilação , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Populus/enzimologia , Populus/genética , Populus/microbiologia , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Protoplastos/metabolismo
14.
J Exp Bot ; 63(2): 785-95, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22048038

RESUMO

A 1149 bp genomic fragment corresponding to the 5' non-coding region of the PgD1 (Picea glauca Defensin 1) gene was cloned, characterized, and compared with all Arabidopsis thaliana defensin promoters. The cloned fragment was found to contain several motifs specific to defence or hormonal response, including a motif involved in the methyl jasmonate reponse, a fungal elicitor responsive element, and TC-rich repeat cis-acting element involved in defence and stress responsiveness. A functional analysis of the PgD1 promoter was performed using the uidA (GUS) reporter system in stably transformed Arabidopsis and white spruce plants. The PgD1 promoter was responsive to jasmonic acid (JA), to infection by fungus and to wounding. In transgenic spruce embryos, GUS staining was clearly restricted to the shoot apical meristem. In Arabidopsis, faint GUS coloration was observed in leaves and flowers and a strong blue colour was observed in guard cells and trichomes. Transgenic Arabidopsis plants expressing the PgD1::GUS construct were also infiltrated with the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000. It caused a suppression of defensin expression probably resulting from the antagonistic relationship between the pathogen-stimulated salicylic acid pathway and the jasmonic acid pathway. It is therefore concluded that the PgD1 promoter fragment cloned appears to contain most if not all the elements for proper PgD1 expression and that these elements are also recognized in Arabidopsis despite the phylogenetic and evolutionary differences that separates them.


Assuntos
Arabidopsis/genética , Defensinas/genética , Picea/genética , Regiões Promotoras Genéticas/genética , Arabidopsis/citologia , Arabidopsis/fisiologia , Cycadopsida/citologia , Cycadopsida/genética , Cycadopsida/fisiologia , Ciclopentanos/metabolismo , DNA de Plantas/genética , Defensinas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genes Reporter , Magnoliopsida/citologia , Magnoliopsida/genética , Magnoliopsida/fisiologia , Motivos de Nucleotídeos , Oxilipinas/metabolismo , Filogenia , Picea/citologia , Picea/fisiologia , Imunidade Vegetal , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/citologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Transdução de Sinais/fisiologia , Supressão Genética/genética
15.
Front Plant Sci ; 13: 857535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574135

RESUMO

One of the reclamation objectives for treated oil sands tailings (OST) is to establish boreal forest communities that can integrate with the surrounding area. Hence, selection of appropriate soil reclamation cover designs and plant species for revegetation are important aspects of tailings landform reclamation and closure. Research and monitoring of the long term and immediate impacts of capped OST on the growth and survival of native boreal plant species are currently underway. However, plant responses to OST-associated toxicity are not well known at the molecular level. Using RNA sequencing, we examined the effects of three types of OST on the willow transcriptome under different capping strategies. The transcriptomic data showed that some genes respond universally and others in a specific manner to different types of OST. Among the dominant and shared upregulated genes, we found some encoding protein detoxification (PD), Cytochrome P450 (CYPs), glutathione S-transferase regulatory process (GST), UDP-glycosyltransferase (UGT), and ABC transporter and regulatory process associated proteins. Moreover, genes encoding several stress-responsive transcription factors (bZIP, BHLH, ERF, MYB, NAC, WRKY) were upregulated with OST-exposure, while high numbers of transcripts related to photosynthetic activity and chloroplast structure and function were downregulated. Overall, the expression of 40 genes was found consistent across all tailings types and capping strategies. The qPCR analysis of a subset of these shared genes suggested that they could reliably distinguish plants exposed to different OST associated stress. Our results indicated that it is possible to develop OST stress exposure biosensors merely based on changes in the level of expression of a relatively small set of genes. The outcomes of this study will further guide optimization of OST capping and revegetation technology by using knowledge based plant stress adaptation strategies.

16.
New Phytol ; 189(3): 678-687, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21087262

RESUMO

The perennial plant model species Populus trichocarpa has received considerable attention in the last 5 yr because of its potential use as a bioenergy crop. The completion of its genome sequence revealed extensive homologies with the herbaceous annual species Arabidopsis thaliana. This review highlights the similarities and differences at the qualitative defence response components level, notably in putative NBS-LRR protein content and downstream defence regulators. With almost a twofold NBS-LRR gene complement compared with A. thaliana, P. trichocarpa also encodes some putative R-proteins with unusual architectures and possible DNA-binding capacity. P. trichocarpa also possesses all the known main components characteristic of TIR-NB-LRR and CC-NB-LRR signalling. However, very little has been done with regard to the components involved in the poplar qualitative response to pathogens. In addition, the relationship between plant-biotroph perception/signalling and the role of salicylic acid, an important defence compound, remains uncertain. This review aims to identify the genomic components present in poplar that could potentially participate in the qualitative response and highlights where efforts should be devoted to obtain a better understanding of the poplar qualitative defence response.


Assuntos
Genes de Plantas/imunologia , Genoma de Planta/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Proteínas de Plantas/imunologia , Populus/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Populus/imunologia , Ácido Salicílico/imunologia , Transdução de Sinais/fisiologia
17.
Plant Physiol ; 152(2): 639-55, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19939949

RESUMO

The conifer Picea abies (Norway spruce) defends itself against herbivores and pathogens with a terpenoid-based oleoresin composed chiefly of monoterpenes (C(10)) and diterpenes (C(20)). An important group of enzymes in oleoresin biosynthesis are the short-chain isoprenyl diphosphate synthases that produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of different terpenoid classes. We isolated a gene from P. abies via a homology-based polymerase chain reaction approach that encodes a short-chain isoprenyl diphosphate synthase making an unusual mixture of two products, geranyl diphosphate (C(10)) and geranylgeranyl diphosphate (C(20)). This bifunctionality was confirmed by expression in both prokaryotic (Escherichia coli) and eukaryotic (P. abies embryogenic tissue) hosts. Thus, this isoprenyl diphosphate synthase, designated PaIDS1, could contribute to the biosynthesis of both major terpene types in P. abies oleoresin. In saplings, PaIDS1 transcript was restricted to wood and bark, and transcript level increased dramatically after methyl jasmonate treatment, which induces the formation of new (traumatic) resin ducts. Polyclonal antibodies localized the PaIDS1 protein to the epithelial cells surrounding the traumatic resin ducts. PaIDS1 has a close phylogenetic relationship to single-product conifer geranyl diphosphate and geranylgeranyl diphosphate synthases. Its catalytic properties and reaction mechanism resemble those of conifer geranylgeranyl diphosphate synthases, except that significant quantities of the intermediate geranyl diphosphate are released. Using site-directed mutagenesis and chimeras of PaIDS1 with single-product geranyl diphosphate and geranylgeranyl diphosphate synthases, specific amino acid residues were identified that alter the relative composition of geranyl to geranylgeranyl diphosphate.


Assuntos
Farnesiltranstransferase/metabolismo , Picea/enzimologia , Extratos Vegetais/biossíntese , Proteínas de Plantas/metabolismo , Terpenos/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Farnesiltranstransferase/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Picea/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Fosfatos de Poli-Isoprenil/biossíntese , RNA de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Sesquiterpenos
18.
Microorganisms ; 9(5)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063040

RESUMO

Rust fungi cause epidemics that threaten the production of important plant species, such as wheat and soy. Melampsora larici-populina (Mlp) causes the poplar rust and encodes at least 1184 candidate effectors (CEs) whose functions are poorly known. In this study, we sequenced the transcriptome and used mass spectrometry to analyze the metabolome of Arabidopsis plants constitutively expressing 14 Mlp CEs and of a control line to discover alterations leading to plant susceptibility. We found 2299 deregulated genes across the experiment. Genes involved in pattern-triggered immunity, such as FRK1, PR1, RBOHD, and WRKY33, as well as AUX/IAA genes were down-regulated. We further observed that 680 metabolites were deregulated in at least one CE-expressing transgenic line, with "highly unsaturated and phenolic compounds" and "peptides" enriched among down- and up-regulated metabolites. Interestingly, transgenic lines expressing unrelated CEs had correlated patterns of gene and metabolite deregulation, while expression of CEs belonging to the same family deregulated different genes and metabolites. Thus, our results uncouple effector sequence similarity and function. This supports that effector functional investigation in the context of their virulence activity and effect on plant susceptibility requires the investigation of the individual effector and precludes generalization based on sequence similarity.

19.
Sci Total Environ ; 780: 146581, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33774298

RESUMO

Anthropogenic N emissions represent a potential threat for forest ecosystems, and environmental indicators that provide insight into the changing forest N cycle are needed. Tree ring N isotopic ratios (δ15N) appear as a contentious choice for this role as the exact mechanisms behind tree-ring δ15N changes seldom benefit from a scrutiny of the soil-to-tree N continuum. This study integrates the results from the analysis of soil chemistry, soil microbiome genomics, and δ15N values of soil N compounds, roots, ectomycorrhizal (EcM) fungi and recent tree rings of thirteen white spruce trees sampled in five stands, from two regions exposed to moderate anthropogenic N emissions (3.9 to 8.1 kg/ha/y) with distinctive δ15N signals. Our results reveal that airborne anthropogenic N with distinct δ15N signals may directly modify the NO3- δ15N values in surface soils, but not the ones of NH4+, the preferred N form of the studied trees. Hence, the tree-ring δ15N values reflect specific soil N conditions and assimilation modes by trees. Along with a wide tree-ring δ15N range, we report differences in: soil nutrient content and N transformation rates; δ15N values of NH4+, total dissolved N (TDN) and EcM mantle enveloping the root tips; and bacterial and fungal community structures. We combine EcM mantle and root δ15N values with fungal identification to infer that hydrophobic EcM fungi transfer N from the dissolved organic N (DON) pool to roots under acidic conditions, and hydrophilic EcM fungi transfer various N forms to roots, which also assimilate N directly under less acidic conditions. Despite the complexities of soil biogeochemical properties and processes identified in the studied sites, in the end, the tree-ring δ15N averages inversely correlate with soil pH and anthropogenic N inputs, confirming white spruce tree-ring δ15N values as a suitable indicator for environmental research on forest N cycling.


Assuntos
Micorrizas , Solo , Ecossistema , Florestas , Micorrizas/química , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Taiga
20.
BMC Genomics ; 11: 674, 2010 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-21114852

RESUMO

BACKGROUND: Riverine ecosystems, highly sensitive to climate change and human activities, are characterized by rapid environmental change to fluctuating water levels and siltation, causing stress on their biological components. We have little understanding of mechanisms by which riverine plant species have developed adaptive strategies to cope with stress in dynamic environments while maintaining growth and development. RESULTS: We report that poplar (Populus spp.) has evolved a systems level "stress proteome" in the leaf-stem-root apoplast continuum to counter biotic and abiotic factors. To obtain apoplast proteins from P. deltoides, we developed pressure-chamber and water-displacement methods for leaves and stems, respectively. Analyses of 303 proteins and corresponding transcripts coupled with controlled experiments and bioinformatics demonstrate that poplar depends on constitutive and inducible factors to deal with water, pathogen, and oxidative stress. However, each apoplast possessed a unique set of proteins, indicating that response to stress is partly compartmentalized. Apoplast proteins that are involved in glycolysis, fermentation, and catabolism of sucrose and starch appear to enable poplar to grow normally under water stress. Pathogenesis-related proteins mediating water and pathogen stress in apoplast were particularly abundant and effective in suppressing growth of the most prevalent poplar pathogen Melampsora. Unexpectedly, we found diverse peroxidases that appear to be involved in stress-induced cell wall modification in apoplast, particularly during the growing season. Poplar developed a robust antioxidative system to buffer oxidation in stem apoplast. CONCLUSION: These findings suggest that multistress response in the apoplast constitutes an important adaptive trait for poplar to inhabit dynamic environments and is also a potential mechanism in other riverine plant species.


Assuntos
Matriz Extracelular/metabolismo , Espaço Intracelular/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Proteoma/metabolismo , Estresse Fisiológico , Antioxidantes/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Análise por Conglomerados , Secas , Matriz Extracelular/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Modelos Biológicos , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Populus/efeitos dos fármacos , Populus/genética , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico/efeitos dos fármacos , Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA