Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38790220

RESUMO

This systematic review and meta-analysis aimed to verify the association between the genetic variants of adenosine triphosphate (ATP)-binding cassette subfamily B member 1 (ABCB1) and ATP-binding cassette subfamily G member 2 (ABCG2) genes and the presence and severity of gefitinib-associated adverse reactions. We systematically searched PubMed, Virtual Health Library/Bireme, Scopus, Embase, and Web of Science databases for relevant studies published up to February 2024. In total, five studies were included in the review. Additionally, eight genetic variants related to ABCB1 (rs1045642, rs1128503, rs2032582, and rs1025836) and ABCG2 (rs2231142, rs2231137, rs2622604, and 15622C>T) genes were analyzed. Meta-analysis showed a significant association between the ABCB1 gene rs1045642 TT genotype and presence of diarrhea (OR = 5.41, 95% CI: 1.38-21.14, I2 = 0%), the ABCB1 gene rs1128503 TT genotype and CT + TT group and the presence of skin rash (OR = 4.37, 95% CI: 1.51-12.61, I2 = 0% and OR = 6.99, 95%CI: 1.61-30.30, I2= 0%, respectively), and the ABCG2 gene rs2231142 CC genotype and presence of diarrhea (OR = 3.87, 95% CI: 1.53-9.84, I2 = 39%). No ABCB1 or ABCG2 genes were positively associated with the severity of adverse reactions associated with gefitinib. In conclusion, this study showed that ABCB1 and ABCG2 variants are likely to exhibit clinical implications in predicting the presence of adverse reactions to gefitinib.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Gefitinibe , Proteínas de Neoplasias , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Gefitinibe/efeitos adversos , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Antineoplásicos/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Genótipo
2.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39204145

RESUMO

Gefitinib is a selective inhibitor of the epidermal growth factor receptor that is used to treat advanced and metastatic non-small cell lung cancer (NSCLC). Dermatological adverse reactions are most commonly associated with gefitinib treatment. The cause of adverse reactions in individuals is multifactorial. Pharmacogenetics is an effective tool to detect such adverse reactions. This case report describes a female patient with NSCLC who was administered gefitinib at a dose of 250 mg/day. However, due to severe adverse dermatological reactions, the treatment was interrupted for 15 d and antibiotic therapy was administered to manage the skin rashes, maculopapular rashes, and hyperpigmentation. Treatment adherence was adequate, and no drug interactions were detected. A pharmacogenetic analysis revealed homozygosity in the ATP-binding cassette (ABC)-B1 rs1128503 (c.1236A>G), heterozygosity in ABCG2 rs2231142 (c.421G>T) and rs2622604 (c.-20+614T>C), and a non-functional variant of the cytochrome P450 family 3, subfamily A, member 5 (CYP3A5). The relationship between altered genetic variants and the presence of adverse reactions induced by gefitinib is still controversial. Overall, this case report highlights the importance of continuing to study pharmacogenetics as predictors of adverse drug reactions.

3.
Oncol Lett ; 27(5): 219, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38586206

RESUMO

Lung cancer is the leading cause of cancer-related morbidity and mortality worldwide. The initial treatment of lung cancer depends on the definition of the tumor type and its staging. The most common treatment is chemotherapy, and the first-line treatment is a combination of carboplatin and paclitaxel. Although this treatment has good efficacy, there is a high prevalence of adverse events, particularly hematological reactions. Studies on new biomarkers related to these adverse events, such as circulating microRNAs (miRNAs/miRs), are important for optimizing the quality of life of patients. miRNAs have high stability in several biological fluids and they have specific expressions in different tissues or pathologies. Thus, the present study aimed to assess the relationship between circulating miRNAs and adverse hematologic reactions caused by treatment with carboplatin + paclitaxel in patients with lung cancer. Blood was collected from patients before and 15 days after chemotherapy for hematological adverse reaction analysis, microarray and quantitative (q)PCR validation. Adverse reactions were classified according to the Common Terminology Criteria for Adverse Events v4.0. Microarray analysis was performed using plasma from six patients without anemia and six patients with anemia, and nine miRNAs were differentially expressed. miR-1273g-3p, miR-3613-5p and miR-455-3p, identified using microarray, were assessed using qPCR in 20 patients without anemia and 26 patients with anemia. Bioinformatic analyses of miR-455-3p were performed using miRWalk, the Database for Annotation, Visualization and Integrated Discovery and GeneMania software. Microarray analysis of patients with and without anemia revealed nine significant differentially-expressed plasma miRNAs among these patients. Of these, miR-1273g-3p, miR-3613-5p and miR-455-3p were chosen for further assessment. Only miR-455-3p demonstrated a significant reduction in expression (P=0.04) between the groups before chemotherapy with carboplatin + paclitaxel. Bioinformatics analysis of miR-455-3p revealed a relationship between this miRNA and the hematopoietic pathway, particularly with respect to the RUNX family transcription factor 1 (RUNX1) and TAL bHLH transcription factor 1, erythroid differentiation factor (TAL1) genes. The most prevalent adverse reactions in patients with lung cancer treated with carboplatin + paclitaxel were hematological, particularly anemia. This adverse reaction, caused by dysfunction of the hematopoietic system, may be explained by a possible association between the important genes in this system, RUNX1 and TAL1, and hsa-miR-455-3p.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA