Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(10): 4619-4626, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36802495

RESUMO

Nanoparticles (NPs) concentration directly impacts the dose delivered to target tissues by nanocarriers. The evaluation of this parameter is required during NPs developmental and quality control stages, for setting dose-response correlations and for evaluating the reproducibility of the manufacturing process. Still, faster and simpler procedures, dismissing skilled operators and post-analysis conversions are needed to quantify NPs for research and quality control operations, and to support result validation. Herein, a miniaturized automated ensemble method to measure NPs concentration was established under the lab-on-valve (LOV) mesofluidic platform. Automatic NPs sampling and delivery to the LOV detection unit were set by flow programming. NPs concentration measurements were based on the decrease in the light transmitted to the detector due to the light scattered by NPs when passing through the optical path. Each analysis was accomplished in 2 min, rendering a determination throughput of 30 h-1 (6 samples h-1 for n = 5) and only requiring 30 µL (≈0.03 g) of NPs suspension. Measurements were performed on polymeric NPs, as these represent one of the major classes of NPs under development for drug-delivery aims. Determinations for polystyrene NPs (of 100, 200, and 500 nm) and for NPs made of PEGylated poly-d,l-lactide-co-glycolide (PEG-PLGA, a biocompatible FDA-approved polymer) were accomplished within 108-1012 particles mL-1 range, depending on the NPs size and composition. NPs size and concentration were maintained during analysis, as verified for NPs eluted from the LOV by particle tracking analysis (PTA). Moreover, concentration measurements for PEG-PLGA NPs loaded with an anti-inflammatory drug, methotrexate (MTX), after their incubation in simulated gastric and intestinal fluids were successfully achieved (recovery values of 102-115%, as confirmed by PTA), showing the suitability of the proposed method to support the development of polymeric NPs targeting intestinal delivery.


Assuntos
Nanopartículas , Polietilenoglicóis , Reprodutibilidade dos Testes , Poliésteres , Polímeros , Tamanho da Partícula , Portadores de Fármacos
2.
Anal Bioanal Chem ; 415(4): 683-694, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36464734

RESUMO

Protein-bound uremic toxins, mainly indoxyl sulfate (3-INDS), p-cresol sulfate (pCS), and indole-3-acetic acid (3-IAA) but also phenol (Pol) and p-cresol (pC), are progressively accumulated during chronic kidney disease (CKD). Their accurate measurement in biomatrices is demanded for timely diagnosis and adoption of appropriate therapeutic measures. Multianalyte methods allowing the establishment of a uremic metabolite profile are still missing. Hence, the aim of this work was to develop a rapid and sensitive method based on high-performance liquid chromatography with fluorescence detection for the simultaneous quantification of Pol, 3-IAA, pC, 3-INDS, and pCS in human plasma. Separation was attained in 12 min, using a monolithic C18 column and isocratic elution with acetonitrile and phosphate buffer containing an ion-pairing reagent, at a flow rate of 2 mL min-1. Standards were prepared in plasma and quantification was performed using the background subtraction approach. LOQ values were ≤ 0.2 µg mL-1 for all analytes except for pCS (LOQ of 2 µg mL-1). The method proved to be accurate (93.5-112%) and precise (CV ≤ 14.3%). The multianalyte application of the method, associated to a reduced sample volume (50 µL), a less toxic internal standard (eugenol) in comparison to the previously applied 2,6-dimethylphenol and 4-ethylphenol, and a green extraction solvent (ethanol), resulted in the AGREE score of 0.62 which is in line with the recent trend of green and sustainable analytical chemistry. The validated method was successfully applied to the analysis of plasma samples from control subjects exhibiting normal levels of uremic toxins and CKD patients presenting significantly higher levels of 3-IAA, pC, 3-INDS, and pCS that can be further investigated as biomarkers of disease progression.


Assuntos
Insuficiência Renal Crônica , Toxinas Biológicas , Humanos , Toxinas Urêmicas , Cromatografia Líquida de Alta Pressão/métodos , Cresóis/metabolismo , Cresóis/uso terapêutico , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/metabolismo , Fenol , Indicã/química , Indicã/metabolismo , Toxinas Biológicas/metabolismo , Toxinas Biológicas/uso terapêutico
3.
J Phys Chem A ; 127(39): 8220-8227, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37733882

RESUMO

Nanoparticles used for medical applications commonly possess coatings or surface functionalities intended to provide specific behavior in vivo, for example, the use of PEG to provide stealth properties. Direct, quantitative measurement of the surface chemistry and composition of such systems in a hydrated environment has thus far not been demonstrated, yet such measurements are of great importance for the development of nanomedicine systems. Here we demonstrate the first use of cryo-XPS for the measurement of two PEG-functionalized nanomedicines: a polymeric drug delivery system and a lipid nanoparticle mRNA carrier. The observed differences between cryo-XPS and standard XPS measurements indicate the potential of cryo-XPS for providing quantitative measurements of such nanoparticle systems in hydrated conditions.


Assuntos
Nanomedicina , Nanopartículas , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polímeros
4.
Anal Bioanal Chem ; 414(1): 649-659, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34410441

RESUMO

An automatic micro-solid-phase extraction (µSPE) method using on-line renewable sorbent beads followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was established for the determination of tranexamic acid (TXA) in urine. The µSPE method was based on the bead injection (BI) concept combined with the mesofluidic lab-on-valve (LOV) platform. All steps of the µSPE-BI-LOV were implemented by computer programming, rendering enhanced precision on time and flow events. Several parameters, including the type of sorbent, volume and composition of the conditioning solution, washing solution, and eluent composition, were evaluated to improve the extraction efficiency. The best results were obtained with a hydrophilic-lipophilic balanced mixed-mode sorbent, decorated with sulfonic acid groups (Oasis MCX), and 99% acetonitrile-water (50:50, v/v)-1% ammonium hydroxide as eluent. Chromatographic separation was performed using a BEH amide column coupled to MS/MS detection in positive ionization mode. Good linearity was achieved (R2 > 0.998) for TXA concentrations in urine ranging from 300 to 3000 ng mL-1, with LOD and LOQ of 30 and 65 ng mL-1, respectively. Dilution integrity was observed for dilution factors up to 20,000 times, providing the extension of the upper limit of quantification to 12 mg mL-1. The method was validated according to international guidelines and successfully applied to urine samples collected during scoliosis surgery of pediatric patients treated with TXA.


Assuntos
Espectrometria de Massas em Tandem , Ácido Tranexâmico , Criança , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Extração em Fase Sólida/métodos
5.
Bioconjug Chem ; 31(3): 417-435, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31710203

RESUMO

Fluorescent labeling through bioconjugation is the preferred tool for the investigation of biological functions involving lipids, namely for clarifying metabolic pathways and molecular mechanisms of diseases. The lack of functionalized lipid probes with biological and physicochemical properties suitable for these studies is still a major limitation. Moreover, the synthesis of these probes is challenging and strongly dependent on the application envisioned. The objective of this Review is to highlight advances in the application of fluorescent glycerophospholipid probes through innovative approaches in the synthesis reported in the past decade. The reaction pathways, choice of fluorophore, and location of fluorophore in the glycerophospholipid structure are critically addressed. The relevance of these bioconjugates is exemplified with applications using advanced analysis by fluorescence enhancement or quenching to unravel biomembrane structure features and phospholipase activity. Finally, this Review reinforces the need for innovative and more efficient routes for the synthesis of tailored glycerophospholipids fluorescent conjugates.


Assuntos
Técnicas de Química Sintética/métodos , Corantes Fluorescentes/síntese química , Glicerofosfolipídeos/síntese química , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Glicerofosfolipídeos/química , Glicerofosfolipídeos/metabolismo , Humanos , Proteínas/metabolismo
6.
Anal Bioanal Chem ; 412(24): 6625-6632, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32728863

RESUMO

Neuropeptide Y (NPY) is a peptide widely distributed throughout the body that is involved in various physiological processes, including the regulation of feeding behavior and energy homeostasis. 5-Carbamimidamido-2-(2,2-diphenylacetamido)-N-[(4-hydroxyphenyl)methyl]pentanamide (BIBP 3226) is a selective NPY Y1 receptor antagonist with recognized application in bone regeneration studies, requiring quantification at picogram levels. Hence, BIBP 3226 determination is proposed here by a validated HPLC-MS/MS method, based on a reversed-phase Kinetex® core-shell C8 column (2.6 µm, 150 × 2.1 mm) at 30 °C, elution in isocratic mode using a mixture of acetonitrile and water (30:70, v/v), containing 0.1% (v/v) formic acid, at 0.25 mL min-1, detection in positive ionization mode, and data acquisition in selected reaction monitoring mode. Calibration curves were linear for concentrations ranging from 0.25 to 30 ng mL-1 with LOD and LOQ values as low as 0.1 and 0.3 pg in cell extracts and 16 and 48 pg in supernatant culture media, respectively. BIBP 3226 was successfully determined in cell extracts and supernatants obtained from internalization assays. Using similar exposure conditions, the amount of BIBP 3226 found in breast cancer cells (MCF7) was 72 to 657 times higher than that found in bone marrow cells (Wt C57BL/6 mice), providing an indirect indicator of NPY Y1 receptor expression.


Assuntos
Arginina/análogos & derivados , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Receptores de Neuropeptídeo Y/análise , Animais , Arginina/análise , Cromatografia Líquida/métodos , Humanos , Limite de Detecção , Células MCF-7 , Masculino , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem/métodos
7.
Molecules ; 25(6)2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183441

RESUMO

This work proposes a simple and easy-to-use flow-through system for the implementation of dynamic extractions, aiming at the evaluation of bioaccessible zinc and the characterization of leaching kinetics in dry dog food samples. The kinetic profile of Zn extraction was determined by flame atomic absorption spectroscopy and the results were fitted in an exponential function (R2 > 0.960) compatible with a two first-order reactions model. Values of fast leachable Zn ranged from 83 ± 1 to 313 ± 5 mg of Zn per kg of sample, with associated rate constants ranging from 0.162 ± 0.004 to 0.290 ± 0.014 min-1. Similar results were observed compared to the static batch extraction. The percentage of bioaccessible Zn ranged from 49.0 to 70.0%, with an average value of 58.2% in relation to total Zn content. Principal component analysis regarding the variables fast leachable Zn, associated rate constant, total Zn, and market segment, has shown that 84.6% of variance is explained by two components, where the second component (24.0%) presented loadings only for the fast leachable Zn and associated rate constant. The proposed method is suitable for the fast evaluation (<1 h) of leaching kinetics and bioaccessibility in dry dog food.


Assuntos
Zinco/química , Zinco/metabolismo , Ração Animal , Animais , Disponibilidade Biológica , Cães , Cinética , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Análise de Componente Principal/métodos , Espectrofotometria Atômica/métodos
8.
Molecules ; 25(8)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325744

RESUMO

The evaluation of encapsulation efficiency is a regulatory requirement for the characterization of drug delivery systems. However, the difficulties in efficiently separating nanomedicines from the free drug may compromise the achievement of accurate determinations. Herein, ultrafiltration was exploited as a separative strategy towards the evaluation of methotrexate (MTX) encapsulation efficiency in nanostructured lipid carriers and polymeric nanoparticles. The effect of experimental conditions such as pH and the amount of surfactant present in the ultrafiltration media was addressed aiming at the selection of suitable conditions for the effective purification of nanocarriers. MTX-loaded nanoparticles were then submitted to ultrafiltration and the portions remaining in the upper compartment of the filtering device and in the ultrafiltrate were collected and analyzed by HPLC-UV using a reversed-phase (C18) monolithic column. A short centrifugation time (5 min) was suitable for establishing the amount of encapsulated MTX in nanostructured lipid carriers, based on the assumption that the free MTX concentration was the same in the upper compartment and in the ultrafiltrate. The defined conditions allowed the efficient separation of nanocarriers from the free drug, with recoveries of >85% even when nanoparticles were present in cell culture media and in pig skin surrogate from permeation assays.


Assuntos
Portadores de Fármacos , Metotrexato/química , Metotrexato/isolamento & purificação , Nanopartículas , Ultrafiltração , Portadores de Fármacos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Metotrexato/farmacologia , Nanopartículas/química , Nanomedicina Teranóstica
9.
Anal Bioanal Chem ; 410(3): 981-988, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28889209

RESUMO

Immunoglobulin G (IgG) represents the major fraction of antibodies in healthy adult human serum, and deviations from physiological levels are a generic marker of disease corresponding to different pathologies. Therefore, screening methods for IgG evaluation are a valuable aid to diagnostics. The present work proposes a rapid, automatic, and miniaturized method based on UV-vis micro-bead injection spectroscopy (µ-BIS) for the real-time determination of human serum IgG with label-free detection. Relying on attachment of IgG in rec-protein G immobilized in Sepharose 4B, a bioaffinity column is automatically assembled, where IgG is selectively retained and determined by on-column optical density measurement. A "dilution-and-shoot" approach (50 to 200 times) was implemented without further sample treatment because interferences were flushed out of the column upon sample loading, with minimization of carryover and cross-contamination by automatically discarding the sorbent (0.2 mg) after each determination. No interference from human serum albumin at 60 mg mL-1 in undiluted sample was found. The method allowed IgG determination in the range 100-300 µg mL-1 (corresponding to 5.0-60 mg mL-1 in undiluted samples), with a detection limit of 33 µg mL-1 (1.7 mg mL-1 for samples, dilution factor of 50). RSD values were < 9.4 and < 11.7%, for intra and inter-assay precision, respectively, while recovery values for human serum spiked with IgG at high pathological levels were 97.8-101.4%. Comparison to commercial ELISA kit showed no significant difference for tested samples (n = 8). Moreover, time-to-result decreased from several hours to < 5 min and analysis cost decreased 10 times, showing the potential of the proposed approach as a point-of-care method. Graphical abstract Micro-Bead Injection Spectroscopy method for real time, automated and label-free determination of total serum human Immunoglobulin G (IgG). The method was designed for Lab-on-Valve (LOV) platforms using a miniaturised protein G bioaffinity separative approach. IgG are separated from serum matrix components upon quantification with low non-specific binding in less than 5 min.


Assuntos
Imunoglobulina G/sangue , Proteínas de Bactérias/química , Desenho de Equipamento , Humanos , Proteínas Imobilizadas/química , Imunoglobulina G/isolamento & purificação , Sefarose/química , Análise Espectral/instrumentação
10.
J Sep Sci ; 41(17): 3382-3388, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30006947

RESUMO

The low bioavailability and nonspecific distribution of dapsone and clofazimine, commonly applied in combination for the treatment of leprosy, can produce toxic effects. Nanotechnological approaches enhance the delivery of these drugs. Therefore, a high-performance liquid chromatography method was developed for the simultaneous determination of dapsone and clofazimine loaded in nanoformulations for quality control purposes. Chromatographic separation was achieved on a reversed-phase Kinetex core-shell C18 column, followed by spectrophotometric detection at 280 nm. Considering the different physicochemical properties of dapsone and clofazimine, elution was performed in gradient mode using an aqueous acetate buffer (50 mmol/L, pH 4.8) and an increasing acetonitrile content from 27 to 63% v/v at a flow rate of 1.0 mL/min with retention times of 6.2 and 14.0 min, respectively. The method was validated according to the European Medicines Agency guideline and it was found to be specific, accurate (99.6-114.0%), and precise for intra- (RSD ≤ 1.8%) and interday assays (RSD ≤ 12.5%). Both drugs showed stability after 24 h at room temperature and over three freeze-thaw cycles with recoveries ≥86.2%. Low temperature (4°C) in the autosampler caused the precipitation of clofazimine and must be avoided. The validated method was successfully applied in the quantification of both drugs in nanoformulations.


Assuntos
Clofazimina/análise , Dapsona/análise , Nanoestruturas/análise , Cromatografia Líquida de Alta Pressão , Estrutura Molecular
12.
Anal Chem ; 88(5): 2622-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26814598

RESUMO

In recent years, there has been an increasing interest in nitro fatty acids (NO2-FA) as signaling molecules formed under nitroxidative stress. NO2-FA were detected in vivo in a free form, although it is assumed that they may also be esterified to phospholipids (PL). Nevertheless, insufficient discussion about the nature, origin, or role of nitro phospholipids (NO2-PL) was reported up to now. The aim of this study was to develop a mass spectrometry (MS) based approach which allows identifying nitroalkenes derivatives of three major PL classes found in living systems: phosphatidylcholines (PCs), phosphatidylethanolamine (PEs), and phosphatidylserines (PSs). NO2-PLs were generated by NO2BF4 in hydrophobic environment, mimicking biological systems. The NO2-PLs were then detected by electrospray ionization (ESI-MS) and ESI-MS coupled to hydrophilic interaction liquid chromatography (HILIC). Identified NO2-PLs were further analyzed by tandem MS in positive (as [M + H](+) ions for all PL classes) and negative-ion mode (as [M - H](-) ions for PEs and PSs and [M + OAc](-) ions for PCs). Typical MS/MS fragmentation pattern of all NO2-PL included a neutral loss of HNO2, product ions arising from the combined loss of polar headgroup and HNO2, [NO2-FA + H](+) and [NO2-FA - H](-) product ions, and cleavages on the fatty acid backbone near the nitro group, allowing its localization within the FA akyl chain. Developed MS method was used to identify NO2-PL in cardiac mitochondria from a well-characterized animal model of type 1 diabetes mellitus. We identified nine NO2-PCs and one NO2-PE species. The physiological relevance of these findings is still unknown.


Assuntos
Nitrocompostos/análise , Fosfatidilcolinas/análise , Fosfatidiletanolaminas/análise , Fosfatidilserinas/análise , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Masculino , Mitocôndrias Cardíacas/química , Ratos Wistar , Espectrometria de Massas em Tandem
13.
Anal Bioanal Chem ; 413(30): 7319-7321, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34735606
14.
Anal Bioanal Chem ; 408(3): 971-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26615589

RESUMO

A novel flow-programming setup based on the sequential injection principle is herein proposed for on-line monitoring of temporal events in cell permeation studies. The permeation unit consists of a Franz cell with its basolateral compartment mixed under mechanical agitation and thermostated at 37 °C. The apical compartment is replaced by commercially available Transwell inserts with a precultivated cell monolayer. The transport of drug substances across epithelial cells genetically modified with the P-glycoprotein membrane transporter (MDCKII-MDR1) is monitored on-line using rhodamine 123 as a fluorescent marker. The permeation kinetics of the marker is obtained in a fully automated mode by sampling minute volumes of solution from the basolateral compartment in short intervals (10 min) up to 4 h. The effect of a P-glycoprotein transporter inhibitor, verapamil as a model drug, on the efficiency of the marker transport across the cell monolayer is thoroughly investigated. The analytical features of the proposed flow method for cell permeation studies in real time are critically compared against conventional batch-wise procedures and microfluidic devices.


Assuntos
Automação/métodos , Células Epiteliais/metabolismo , Análise de Injeção de Fluxo/métodos , Verapamil/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Células Epiteliais/química , Análise de Injeção de Fluxo/instrumentação , Humanos , Cinética , Rodamina 123/química , Rodamina 123/metabolismo , Verapamil/química
15.
Anal Bioanal Chem ; 412(30): 8225-8227, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33089344
17.
Anal Bioanal Chem ; 411(17): 3695-3698, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31134314
18.
Int J Mol Sci ; 15(7): 11387-402, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24968275

RESUMO

Total antioxidant capacity assays are recognized as instrumental to establish antioxidant status of biological samples, however the varying experimental conditions result in conclusions that may not be transposable to other settings. After selection of the complexing agent, reagent addition order, buffer type and concentration, copper reducing assays were adapted to a high-throughput scheme and validated using model biological antioxidant compounds of ascorbic acid, Trolox (a soluble analogue of vitamin E), uric acid and glutathione. A critical comparison was made based on real samples including NIST-909c human serum certified sample, and five study samples. The validated method provided linear range up to 100 µM Trolox, (limit of detection 2.3 µM; limit of quantification 7.7 µM) with recovery results above 85% and precision <5%. The validated developed method with an increased sensitivity is a sound choice for assessment of TAC in serum samples.


Assuntos
Antioxidantes/análise , Análise Química do Sangue/métodos , Cobre/química , Ácido Ascórbico/sangue , Cromanos/sangue , Glutationa/sangue , Ensaios de Triagem em Larga Escala/métodos , Humanos , Oxirredução , Ácido Úrico/sangue
19.
Foods ; 13(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38254490

RESUMO

Around two million tons of olive oil are produced in Europe annually, with Portugal being among the top five European olive oil-producing countries. Olive oil production results in a substantial amount of waste in the form of olive leaves. These discarded olive leaves contain valuable phenolic compounds with antioxidant, anti-inflammatory, hypoglycaemic, neuroprotective, and antiproliferative properties. Due to their richness in polyphenols with health-promoting properties, olive leaves can be considered a potential functional food ingredient. Thus, sustainable practices for reusing olive leaf waste are in demand. In this study, the polyphenolic content in olive leaves from different Portuguese locations was determined using HPLC-UV-Vis after defining the best fit-for-purpose liquid extraction strategy. The differences in the in vitro antioxidant activity in these samples were determined by several methodologies based on radical scavenging (against 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), 2,2-diphenyl-2-picrylhydrazyl (DPPH), and peroxyl radical (ORAC)) and on reducing properties (cupric-reducing antioxidant capacity (CUPRAC), and Folin-Ciocalteu assay (FC)), to unveil the relationship between the profile and quantity of polyphenols with antioxidant mechanisms and their capacity. At last, the stability of extracted compounds upon lyophilization and exposition to surrogate biological fluids was assessed, envisioning the future incorporation of olive leaves extracted compounds in food products.

20.
Talanta ; 271: 125665, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271840

RESUMO

The presence of endocrine-disrupting compounds (EDCs) in water poses a significant threat to human and animal health, as recognized by regulatory agencies throughout the world. The Yeast Estrogen Screen (YES) assay is an excellent method to evaluate the presence of these compounds in water due to its simplicity and capacity to assess the bioaccessible forms/fractions of these compounds. In the presence of a compound with estrogenic activity, Saccharomyces cerevisiae cells, containing a lacZ reporter gene encoding the enzyme ß-galactosidase, are induced, the enzyme is synthesised, and released to the extracellular medium. In this work, a YES-based approach encompassing the use of a lacZ reporter gene modified strain of S. cerevisiae, microcarriers as solid support, and a fluorescent substrate, fluorescein di-ß-d-galactopyranoside, is proposed, allowing for the assessment of EDCs' presence after only 2 h of incubation. The proposed method provided an EC50 of 0.17 ± 0.03 nM and an LLOQ of 0.03 nM, expressed as 17ß-estradiol. The assessment of different EDCs provided EC50 values between 0.16 and 1.2 × 103 nM. After application to wastewaters, similar results were obtained for EDCs screening, much faster, compared to the conventional 45 h spectrophotometric procedure using a commercial kit, showing potential for onsite high-throughput screening of environmental contamination.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Humanos , Saccharomyces cerevisiae/genética , Estrogênios/análise , Estradiol/análise , Genes Reporter , Água , Disruptores Endócrinos/análise , Poluentes Químicos da Água/análise , Bioensaio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA