Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Educ Dev ; 84: 102411, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34239223

RESUMO

This paper uses measurements of learning inequality to explore whether learning interventions that are aimed at improving means also reduce inequality, and if so, under what conditions. There is abundant evidence that learning levels are generally low in low- and middle-income countries (LMIC), but there is less knowledge about how learning achievement is distributed within these contexts, and especially about how these distributions change as mean levels increase. We use child-level data on foundational literacy outcomes to quantitatively explore whether and how learning inequality using metrics borrowed from the economics and inequality literature can help us understand the impact of learning interventions. The paper deepens recent work in several ways. First, it extends the analysis to six LMIC, displaying which measures are computable and coherent across contexts and baseline levels. This extension can add valuable information to program evaluation, without being redundant with other metrics. Second, we show the large extent to which the disaggregation of inequality of foundational skills between- and within-schools and grades varies by context and language. Third, we present initial empirical evidence that, at least in the contexts of analysis of foundational interventions, improving average performance can reduce inequality as well, across all levels of socioeconomic status (SES). The data show that at baseline, the groups with the highest internal inequality tend to be the groups with lowest SES and lowest reading scores, as inequality among the poor themselves is higher than among their wealthier counterparts. Regardless of which SES groups benefit more in terms of a change in mean levels of reading, there is still a considerable reduction in inequality by baseline achievement as means increase. These results have policy implications in terms of targeting of interventions: much can be achieved in terms of simultaneously improving averages and increasing equality. This seems particularly true when the initial learning levels are as low as they currently are the developing world.

2.
J Exp Biol ; 223(Pt 14)2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32527958

RESUMO

Sloths exhibit below branch locomotion whereby their limbs are loaded in tension to support the body weight. Suspensory behaviors require both strength and fatigue resistance from the limb flexors; however, skeletal muscle mass of sloths is reduced compared with other arboreal mammals. Although suspensory locomotion demands that muscles are active to counteract the pull of gravity, it is possible that sloths minimize muscle activation and/or selectively recruit slow motor units to maintain support, thus indicating neuromuscular specializations to conserve energy. Electromyography (EMG) was evaluated in a sample of three-toed sloths (Bradypus variegatus; N=6) to test this hypothesis. EMG was recorded at 2000 Hz via fine-wire electrodes implanted into two suites of four muscles in the left forelimb while sloths performed suspensory hanging (SH), suspensory walking (SW) and vertical climbing (VC). All muscles were minimally active for SH. During SW and VC, sloths moved slowly (duty factor: 0.83) and activation patterns were consistent between behaviors; the flexors were activated early and for a large percentage of limb contact, whereas the extensors were activated for shorter burst durations on average and showed biphasic (contact and swing) activity. Muscle activities were maximal for the elbow flexors and lowest for the carpal/digital flexors, and overall activity was significantly greater for SW and VC compared with SH. Wavelet analysis indicated high mean EMG frequencies from the myoelectric intensity spectra coupled with low burst intensities for SH, although the opposite pattern occurred for SW and VC, with the shoulder flexors and elbow flexor, m. brachioradialis, having extremely low mean EMG frequencies that are consistent with recruitment of slow fibers. Collectively, these findings support the hypothesis and suggest that sloths may selectively recruit smaller, fast motor units for suspensory postures but have the ability to offset the cost of force production by recruitment of large, slow motor units during locomotion.


Assuntos
Eletromiografia , Locomoção , Bichos-Preguiça , Animais , Membro Anterior , Músculo Esquelético
3.
J Biol Inorg Chem ; 24(3): 419-432, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30949838

RESUMO

A new series of silver compounds could be of interest on designing new drugs for the treatment of leishmaniasis. The compounds [Ag(phen)(imzt)]NO3(1), [Ag(phen)(imzt)]CF3SO3(2), [Ag(phen)2](BF4)·H2O (3), [Ag2(imzt)6](NO3)2(4), and imzt have been synthesized and evaluated in vitro for antileishmanial activity against Leishmania. (L.) amazonensis (La) and L. (L.) chagasi (Lc), and two of them were selected for in vivo studies. In addition to investigating the action on Leishmania, their effects on the hydrogen peroxide production and cysteine protease inhibition have also been investigated. As for antileishmanial activity, compound (4) was the most potent against promastigote and amastigote forms of La (IC50 = 4.67 and 1.88 µM, respectively) and Lc (IC50 = 9.35 and 8.05 µM, respectively); and comparable to that of amphotericin B, reference drug. Beside showing excellent activity, it also showed a low toxicity. In the in vivo context, compound (4) reduced the number of amastigotes in the liver and spleen when compared to the untreated group. In evaluating the effect of the compounds on Leishmania, the level of hydrogen peroxide production was maintained between the lag and log phases; however, in the treatment with compound (4) it was possible to observe a reduction of 25.44 and 49.13%, respectively, in the hydrogen peroxide rates when compared to the lag and log phases. It was noticed that the presence of a nitrate ion and imzt in compound (4) was important for the modulation of the antileishmanial activity. Thus, this compound can represent a potentially new drug for the treatment of leishmaniasis.


Assuntos
Complexos de Coordenação/farmacologia , Imidazolidinas/farmacologia , Tionas/farmacologia , Tripanossomicidas/farmacologia , Animais , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Feminino , Imidazolidinas/síntese química , Imidazolidinas/toxicidade , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Mesocricetus , Camundongos , Testes de Sensibilidade Parasitária , Prata/química , Tionas/síntese química , Tionas/toxicidade , Tripanossomicidas/síntese química , Tripanossomicidas/toxicidade
4.
Appl Microbiol Biotechnol ; 103(15): 6217-6229, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31144015

RESUMO

Acinetobacter baylyi ADP1 is a microorganism with the potential to produce storage lipids. Here, a systematic study was carried out to evaluate growth performance and accumulation of wax esters and triacylglycerols using glycerol, xylose, glucose, acetate, ethanol, and pyruvate as carbon sources. High specific growth rates (µ) were found in gluconeogenic carbon sources (ethanol, acetate, and pyruvate: 0.94 ± 0.18, 0.93 ± 0.06, and 0.61 ± 0.01 h-1, respectively), and low in glucose (0.25 ± 0.01 h-1). Interestingly, these µ values were sustained in a broad range of concentrations of glucose (0.5-50 g L-1), pyruvate (3-10 g L-1), and acetate (0.3-2 g L-1), suggesting a high tolerance to glucose and pyruvate. It was observed that ADP1 is not able to use glycerol or xylose as unique carbon sources. On the other hand, ADP1 showed sensitivity to osmotic upshifts, noted by the lysis at the beginning of cultivations on different carbon sources. However, ADP1 is adapted to relatively high substrate concentrations as indicated by the minimal inhibitory concentrations (MICs) determined at 24 h of cultivations: 350, 50, 80, and 15 g L-1 for glucose, ethanol, pyruvate, and acetate, respectively. Remarkably, ADP1 co-utilized glucose, acetate, ethanol, and pyruvate. Finally, the accumulation of storage lipids, wax esters (WEs), and triacylglycerols (TAGs) showed to be substrate dependent. Under nitrogen-limiting conditions, the TAGs:WEs (mol:mol) accumulation ratios were 1:4.9 in pyruvate and 1:1.6 in glucose, the WEs were mainly accumulated in acetate. In ethanol, no accumulation of lipids was detected.


Assuntos
Acinetobacter/crescimento & desenvolvimento , Acinetobacter/metabolismo , Carbono/metabolismo , Meios de Cultura/química , Metabolismo dos Lipídeos , Lipídeos/análise , Acinetobacter/química
5.
Microb Cell Fact ; 17(1): 10, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29357933

RESUMO

BACKGROUND: Azotobacter vinelandii is a bacterium that produces alginate and polyhydroxybutyrate (P3HB); however, the role of NAD(P)H/NAD(P)+ ratios on the metabolic fluxes through biosynthesis pathways of these biopolymers remains unknown. The aim of this study was to evaluate the NAD(P)H/NAD(P) + ratios and the metabolic fluxes involved in alginate and P3HB biosynthesis, under oxygen-limiting and non-limiting oxygen conditions. RESULTS: The results reveal that changes in the oxygen availability have an important effect on the metabolic fluxes and intracellular NADPH/NADP+ ratio, showing that at the lowest OTR (2.4 mmol L-1 h-1), the flux through the tricarboxylic acid (TCA) cycle decreased 27.6-fold, but the flux through the P3HB biosynthesis increased 6.6-fold in contrast to the cultures without oxygen limitation (OTR = 14.6 mmol L-1 h-1). This was consistent with the increase in the level of transcription of phbB and the P3HB biosynthesis. In addition, under conditions without oxygen limitation, there was an increase in the carbon uptake rate (twofold), as well as in the flux through the pentose phosphate (PP) pathway (4.8-fold), compared to the condition of 2.4 mmol L-1 h-1. At the highest OTR condition, a decrease in the NADPH/NADP+ ratio of threefold was observed, probably as a response to the high respiration rate induced by the respiratory protection of the nitrogenase under diazotrophic conditions, correlating with a high expression of the uncoupled respiratory chain genes (ndhII and cydA) and induction of the expression of the genes encoding the nitrogenase complex (nifH). CONCLUSIONS: We have demonstrated that changes in oxygen availability affect the internal redox state of the cell and carbon metabolic fluxes. This also has a strong impact on the TCA cycle and PP pathway as well as on alginate and P3HB biosynthetic fluxes.


Assuntos
Azotobacter vinelandii/metabolismo , Análise do Fluxo Metabólico , NADP/análise , NAD/análise , Oxigênio/metabolismo , Alginatos/metabolismo , Biomassa , Vias Biossintéticas/efeitos dos fármacos , Carbono/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Meios de Cultura/química , NAD/efeitos dos fármacos , NAD/metabolismo , NADP/efeitos dos fármacos , NADP/metabolismo , Oxirredução , Oxigênio/farmacologia , Via de Pentose Fosfato/efeitos dos fármacos
6.
Appl Microbiol Biotechnol ; 102(6): 2693-2707, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29435618

RESUMO

A novel poly-3-hydroxybutyrate depolymerase was identified in Azotobacter vinelandii. This enzyme, now designated PhbZ1, is associated to the poly-3-hydroxybutyrate (PHB) granules and when expressed in Escherichia coli, it showed in vitro PHB depolymerizing activity on native or artificial PHB granules, but not on crystalline PHB. Native PHB (nPHB) granules isolated from a PhbZ1 mutant had a diminished endogenous in vitro hydrolysis of the polyester, when compared to the granules of the wild-type strain. This in vitro degradation was also tested in the presence of free coenzyme A. Thiolytic degradation of the polymer was observed in the nPHB granules of the wild type, resulting in the formation of 3-hydroxybutyryl-CoA, but was absent in the granules of the mutant. It was previously reported that cultures of A. vinelandii OP grown in a bioreactor showed a decrease in the weight average molecular weight (Mw) of the PHB after 20 h of culture, with an increase in the fraction of polymers of lower molecular weight. This decrease was correlated with an increase in the PHB depolymerase activity during the culture. Here, we show that in the phbZ1 mutant, neither the decrease in the Mw nor the appearance of a low molecular weight polymers occurred. In addition, a higher PHB accumulation was observed in the cultures of the phbZ1 mutant. These results suggest that PhbZ1 has a role in the degradation of PHB in cultures in bioreactors and its inactivation allows the production of a polymer of a uniform high molecular weight.


Assuntos
Azotobacter vinelandii/enzimologia , Azotobacter vinelandii/metabolismo , Hidrolases de Éster Carboxílico/deficiência , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Reatores Biológicos/microbiologia , Hidrolases de Éster Carboxílico/metabolismo , Deleção de Genes , Peso Molecular
7.
J Ind Microbiol Biotechnol ; 43(8): 1167-74, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27154760

RESUMO

In this study, the respiratory activity and carbon usage of the mutant strain of A. vinelandii AT6, impaired in poly-ß-hydroxybutyrate (PHB) production, and their relationship with the synthesis of alginate were evaluated. The alginate yield and the specific oxygen uptake rate were higher (2.5-fold and 62 %, respectively) for the AT6 strain, compared to the control strain (ATCC 9046), both in shake flasks cultures and in bioreactor, under fixed dissolved oxygen tension (1 %). In contrast, the degree of acetylation was similar in both strains. These results, together with the analysis of carbon usage (% C-mol), suggest that in the case of the AT6 strain, the flux of acetyl-CoA (precursor molecule for PHB biosynthesis and alginate acetylation) was diverted to the respiratory chain passing through the tricarboxylic acids cycle, and an important % C-mol was directed through alginate biosynthesis, up to 25.9 % and to a lesser extent, to biomass production (19.7 %).


Assuntos
Azotobacter vinelandii/metabolismo , Carbono/metabolismo , Acetilcoenzima A/metabolismo , Alginatos , Azotobacter vinelandii/genética , Ácido Glucurônico/biossíntese , Ácidos Hexurônicos , Hidroxibutiratos/metabolismo , Mutação , Oxigênio/metabolismo , Poliésteres/metabolismo
8.
J Bacteriol ; 195(8): 1834-44, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23378510

RESUMO

Azotobacter vinelandii is a bacterium which undergoes a differentiation process leading to the formation of metabolically dormant cysts. During the encystment process, A. vinelandii produces alkylresorcinol lipids (ARs) that replace the membrane phospholipids and are also components of the layers covering the cyst. The synthesis of ARs in A. vinelandii has been shown to occur by the activity of enzymes encoded by the arsABCD operon, which is expressed only during the differentiation process. Also, the production of ARs has been shown to be dependent on the stationary-phase sigma factor RpoS, which is also implicated in the control of the synthesis of other cyst components (i.e., alginate and poly-ß-hydroxybutyrate). In this study, we identified ArpR, a LysR-type transcriptional regulator expressed only during encystment that positively regulates arsABCD transcription. We show that this activation is dependent on acetoacetyl-coenzyme A (acetoacetyl-CoA), which might provide a metabolic signal for encystment. We also show that RpoS regulates arsABCD expression through the control of arpR transcription.


Assuntos
Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Resorcinóis/metabolismo , Fator sigma/metabolismo , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Sequência de Bases , Cloranfenicol O-Acetiltransferase/genética , Cloranfenicol O-Acetiltransferase/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Glucuronidase/genética , Glucuronidase/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator sigma/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Microbiology (Reading) ; 157(Pt 6): 1685-1693, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21454367

RESUMO

Azotobacter vinelandii is a soil bacterium that undergoes differentiation to form cysts that are resistant to desiccation. Upon induction of cyst formation, the bacterium synthesizes alkylresorcinols that are present in cysts but not in vegetative cells. Alternative sigma factors play important roles in differentiation. In A. vinelandii, AlgU (sigma E) is involved in controlling the loss of flagella upon induction of encystment. We investigated the involvement of the sigma factor RpoS in cyst formation in A. vinelandii. We analysed the transcriptional regulation of the rpoS gene by PsrA, the main regulator of rpoS in Pseudomonas species, which are closely related to A. vinelandii. Inactivation of rpoS resulted in the inability to form cysts resistant to desiccation and to produce cyst-specific alkylresorcinols, whereas inactivation of psrA reduced by 50 % both production of alkylresorcinols and formation of cysts resistant to desiccation. Electrophoretic mobility shift assays revealed specific binding of PsrA to the rpoS promoter region and that inactivation of psrA reduced rpoS transcription by 60 %. These results indicate that RpoS and PsrA are involved in regulation of encystment and alkylresorcinol synthesis in A. vinelandii.


Assuntos
Azotobacter vinelandii/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Resorcinóis/metabolismo , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Dessecação , Ensaio de Desvio de Mobilidade Eletroforética , Fator sigma/genética , Fatores de Transcrição/genética
10.
Appl Biochem Biotechnol ; 193(1): 79-95, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32813183

RESUMO

Poly-3-hydroxybutyrate (P3HB) is a biopolymer, which presents characteristics similar to those of plastics derived from the petrochemical industry. The thermomechanical properties and biodegradability of P3HB are influenced by its molecular weight (MW). The aim of the present study was to evaluate the changes of the molecular weight of P3HB as a function of oxygen transfer rate (OTR) in the cultures using two strains of Azotobacter vinelandii, a wild-type strain OP, and PhbZ1 mutant with a P3HB depolymerase inactivated. Both strains were grown in a bioreactor under different OTR conditions. An inverse relationship was found between the average molecular weight of P3HB and the OTRmax, obtaining a polymer with a maximal MW (8000-10,000 kDa) from the cultures developed at OTRmax of 5 mmol L-1 h-1 using both strains, with respect to the cultures conducted at 8 and 11 mmol L-1 h-1, which produced a P3HB between 4000 and 5000 kDa. The increase in MW of P3HB was related to the activity of enzymes involved in the synthesis and depolymerization. Overall, our results show that it is possible to modulate the average molecular weight of P3HB by manipulating oxygen transfer conditions with both strains (OP and PhbZ1 mutant) of A. vinelandii.


Assuntos
Azotobacter vinelandii , Reatores Biológicos , Hidroxibutiratos/metabolismo , Mutação , Poliésteres/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/crescimento & desenvolvimento , Peso Molecular
11.
Microbiol Res ; 249: 126775, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33964629

RESUMO

In Pseudomonas spp. PsrA, a transcriptional activator of the rpoS gene, regulates fatty acid catabolism by repressing the fadBA5 ß-oxidation operon. In Azotobacter vinelandii, a soil bacterium closely related to Pseudomonas species, PsrA is also an activator of rpoS expression, although its participation in the regulation of lipid metabolism has not been analyzed. In this work we found that inactivation of psrA had no effect on the expression of ß-oxidation genes in this bacterium, but instead decreased expression of the unsaturated fatty acid biosynthetic operon fabAB (3-hydroxydecanoyl-ACP dehydratase/isomerase and 3-ketoacyl-ACP synthase I). This inactivation also reduced the unsaturated fatty acid content, as revealed by the thin-layer chromatographic analysis, and confirmed by gas chromatography; notably, there was also a lower content of cyclopropane fatty acids, which are synthesized from unsaturated fatty acids. The absence of PsrA has no effect on the growth rate, but showed loss of cell viability during long-term growth, in accordance with the role of these unsaturated and cyclopropane fatty acids in the protection of membranes. Finally, an electrophoretic mobility shift assay revealed specific binding of PsrA to the fabA promoter region, where a putative binding site for this regulator was located. Taken together, our data show that PsrA plays an important role in the regulation of unsaturated fatty acids metabolism in A. vinelandii by positively regulating fabAB.


Assuntos
Azotobacter vinelandii/genética , Ácidos Graxos Insaturados/biossíntese , Regulação Bacteriana da Expressão Gênica , Óperon , Fatores de Transcrição/metabolismo , Azotobacter vinelandii/crescimento & desenvolvimento , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclopropanos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Viabilidade Microbiana , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética
12.
J Environ Sci (China) ; 22(10): 1595-601, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21235191

RESUMO

Because of the lack of reports, the base levels of microbial contamination on stored fuels are unknown in tropical regions and it is unclear whether these levels have some influence on fuel quality parameters. Therefore, fungal quality in automobile fuels stored across Costa Rican territory was evaluated during two years according to the standard ASTM D6974-04. For a total of 96 samples, counts and identification of molds and yeasts were performed on regular gas, premium gas and diesel taken from the bottom and superior part of the container tanks. The highest contamination was found on the bottom of the tanks, where an aqueous phase was usually identified, showing populations over the ones present in the hydrocarbon itself (up to 10(8) CFU/L). Diesel was the most contaminated fuel (up to 10(7) CFU/L); however, an alteration on the physicochemical parameters was not observed in any kind of fuel. Seventy-five mold strains were isolated, Penicillium sp. being the most common genus (45.8% of the samples), and ten yeast strains, from the genera Candida sp. and Rhodotorula sp. Four of the yeasts were able to grow on diesel as the sole carbon source, at concentrations ranging from 0.5% to 25%. Increasing the frequency of tank cleaning, adding antimicrobial agents and monitoring microbial populations are recommended strategies to improve microbial quality of stored fuels.


Assuntos
Fungos/isolamento & purificação , Gasolina , Automóveis , Fungos/crescimento & desenvolvimento
13.
Artigo em Inglês | MEDLINE | ID: mdl-32426348

RESUMO

Poly-(3-hydroxyalkanoates) (PHAs) are bacterial carbon and energy storage compounds. These polymers are synthesized under conditions of nutritional imbalance, where a nutrient is growth-limiting while there is still enough carbon source in the medium. On the other side, the accumulated polymer is mobilized under conditions of nutrient accessibility or by limitation of the carbon source. Thus, it is well known that the accumulation of PHAs is affected by the availability of nutritional resources and this knowledge has been used to establish culture conditions favoring high productivities. In addition to this effect of the metabolic status on PHAs accumulation, several genetic regulatory networks have been shown to drive PHAs metabolism, so the expression of the PHAs genes is under the influence of global or specific regulators. These regulators are thought to coordinate PHAs synthesis and mobilization with the rest of bacterial physiology. While the metabolic and biochemical knowledge related to the biosynthesis of these polymers has led to the development of processes in bioreactors for high-level production and also to the establishment of strategies for metabolic engineering for the synthesis of modified biopolymers, the use of knowledge related to the regulatory circuits controlling PHAs metabolism for strain improvement is scarce. A better understanding of the genetic control systems involved could serve as the foundation for new strategies for strain modification in order to increase PHAs production or to adjust the chemical structure of these biopolymers. In this review, the regulatory systems involved in the control of PHAs metabolism are examined, with emphasis on those acting at the level of expression of the enzymes involved and their potential modification for strain improvement, both for higher titers, or manipulation of polymer properties. The case of the PHAs producer Azotobacter vinelandii is taken as an example of the complexity and variety of systems controlling the accumulation of these interesting polymers in response to diverse situations, many of which could be engineered to improve PHAs production.

14.
J Pharm Sci ; 109(10): 3027-3034, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32623002

RESUMO

Pharmaceutical co-crystals (CCs) are multicomponent materials that enable the development of novel therapeutic products by enhancing the properties of active pharmaceutical ingredients, such as solubility, permeability and bioavailability. Currently, CCs are a commercial reality; nonetheless, their industrial production remains a challenge due to problems related to scale up, control and mode of preparation, which usually relies on batch production rather than continuous. This paper describes the implementation of a concurrent coaxial antisolvent electrospray (Co-E), as a new manufacturing technique, for the synthesis of CCs in a rapid, continuous and controlled manner. The features of Co-E were sized against other co-crystallization methods such as antisolvent crystallization, neat and liquid assisted grinding. Three pairs of amino acids were used as model compounds to demonstrate the features of this new system. The Co-E displayed exclusive product characteristics, including spherical particle morphology and enhanced CC formation. This technique exhibited robustness against process disturbances, displaying consistent product characteristics. Co-E represents a new alternative for the reliable production of CCs and other pharmaceutical products.


Assuntos
Cristalização , Tamanho da Partícula , Solubilidade
15.
J Bacteriol ; 191(9): 3142-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19270099

RESUMO

During encystment of Azotobacter vinelandii, a family of alkylresorcinols (ARs) and alkylpyrones (APs) are synthesized. In the mature cyst, these lipids replace the membrane phospholipids and are also components of the layers covering the cyst. In this study, A. vinelandii strains unable to synthesize ARs were isolated after mini-Tn5 mutagenesis. Cloning and nucleotide sequencing of the affected loci revealed the presence of the transposons within the arsA gene of the previously reported arsABCD gene cluster, which encodes a type I fatty acid synthase. A mutant strain (SW-A) carrying an arsA mutation allowing transcription of arsBCD was constructed and shown to be unable to produce ARs, indicating that the ArsA protein is essential for the synthesis of these phenolic lipids. Transcription of arsA was induced 200-fold in cells undergoing encystment, but only 14-fold in aged cultures of A. vinelandii, in accordance with AR synthesis and cyst formation percentages under the two conditions. Although it was previously reported that the inactivation of arsB abolishes AR synthesis and results in a failure in encystment, the arsA mutants were able to form cysts resistant to desiccation. These data indicate that ARs play a structural role in the exine layer of the cysts, but they are not essential for either cyst formation or for desiccation resistance.


Assuntos
Azotobacter vinelandii/fisiologia , Dessecação , Viabilidade Microbiana , Mutação , Resorcinóis/metabolismo , Esporos Bacterianos/fisiologia , Azotobacter vinelandii/genética , Azotobacter vinelandii/ultraestrutura , Proteínas de Bactérias/genética , Elementos de DNA Transponíveis , Ácido Graxo Sintases/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Ordem dos Genes , Mutagênese Insercional , Óperon , Esporos Bacterianos/genética , Esporos Bacterianos/ultraestrutura
16.
J Bacteriol ; 191(14): 4534-45, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19429624

RESUMO

Azotobacter vinelandii is a soil bacterium related to the Pseudomonas genus that fixes nitrogen under aerobic conditions while simultaneously protecting nitrogenase from oxygen damage. In response to carbon availability, this organism undergoes a simple differentiation process to form cysts that are resistant to drought and other physical and chemical agents. Here we report the complete genome sequence of A. vinelandii DJ, which has a single circular genome of 5,365,318 bp. In order to reconcile an obligate aerobic lifestyle with exquisitely oxygen-sensitive processes, A. vinelandii is specialized in terms of its complement of respiratory proteins. It is able to produce alginate, a polymer that further protects the organism from excess exogenous oxygen, and it has multiple duplications of alginate modification genes, which may alter alginate composition in response to oxygen availability. The genome analysis identified the chromosomal locations of the genes coding for the three known oxygen-sensitive nitrogenases, as well as genes coding for other oxygen-sensitive enzymes, such as carbon monoxide dehydrogenase and formate dehydrogenase. These findings offer new prospects for the wider application of A. vinelandii as a host for the production and characterization of oxygen-sensitive proteins.


Assuntos
Azotobacter vinelandii/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Proteínas de Bactérias/genética , Sequência de Bases , Metabolismo/genética , Dados de Sequência Molecular , Filogenia
17.
PLoS Comput Biol ; 4(2): e36, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18266464

RESUMO

Previous model-based analysis of the metabolic network of Geobacter sulfurreducens suggested the existence of several redundant pathways. Here, we identified eight sets of redundant pathways that included redundancy for the assimilation of acetate, and for the conversion of pyruvate into acetyl-CoA. These equivalent pathways and two other sub-optimal pathways were studied using 5 single-gene deletion mutants in those pathways for the evaluation of the predictive capacity of the model. The growth phenotypes of these mutants were studied under 12 different conditions of electron donor and acceptor availability. The comparison of the model predictions with the resulting experimental phenotypes indicated that pyruvate ferredoxin oxidoreductase is the only activity able to convert pyruvate into acetyl-CoA. However, the results and the modeling showed that the two acetate activation pathways present are not only active, but needed due to the additional role of the acetyl-CoA transferase in the TCA cycle, probably reflecting the adaptation of these bacteria to acetate utilization. In other cases, the data reconciliation suggested additional capacity constraints that were confirmed with biochemical assays. The results demonstrate the need to experimentally verify the activity of key enzymes when developing in silico models of microbial physiology based on sequence-based reconstruction of metabolic networks.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Geobacter/metabolismo , Modelos Biológicos , Complexos Multienzimáticos/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Simulação por Computador , Geobacter/genética , Dados de Sequência Molecular , Complexos Multienzimáticos/genética
18.
Microb Cell Fact ; 6: 7, 2007 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-17306024

RESUMO

Several aspects of alginate and PHB synthesis in Azotobacter vinelandii at a molecular level have been elucidated in articles published during the last ten years. It is now clear that alginate and PHB synthesis are under a very complex genetic control. Genetic modification of A. vinelandii has produced a number of very interesting mutants which have particular traits for alginate production. One of these mutants has been shown to produce the alginate with the highest mean molecular mass so far reported. Recent work has also shed light on the factors determining molecular mass distribution; the most important of these being identified as; dissolved oxygen tension and specific growth rate. The use of specific mutants has been very useful for the correct analysis and interpretation of the factors affecting polymerization. Recent scale-up/down work on alginate production has shown that oxygen limitation is crucial for producing alginate of high molecular mass, a condition which is optimized in shake flasks and which can now be reproduced in stirred fermenters. It is clear that the phenotypes of mutants grown on plates are not necessarily reproducible when the strains are tested in lab or bench scale fermenters. In the case of PHB, A. vinelandii has shown itself able to produce relatively large amounts of this polymer of high molecular weight on cheap substrates, even allowing for simple extraction processes. The development of fermentation strategies has also shown promising results in terms of improving productivity. The understanding of the regulatory mechanisms involved in the control of PHB synthesis, and of its metabolic relationships, has increased considerably, making way for new potential strategies for the further improvement of PHB production. Overall, the use of a multidisciplinary approach, integrating molecular and bioengineering aspects is a necessity for optimizing alginate and PHB production in A. vinelandii.

19.
J Biotechnol ; 259: 50-55, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28830828

RESUMO

Poly-3-hydroxybutyrate (P3HB) is a biopolymer produced by Azotobacter vinelandii. The physicochemical properties and applications of P3HB are strongly influenced by its weight-average molecular mass (Mw), and in A. vinelandii, it could be influenced by the culture conditions. The aim of this study was to evaluate the effect of the P3HB content of the inoculum on the Mw of the polymer produced by A. vinelandii OP in bioreactor cultures. A. vinelandii cells containing 20, 50 and 70% of P3HB were used as inoculum. The P3HB content in the inoculum affected the volumetric P3HB productivity (qP3HB) and the Mw of P3HB. Those cultures inoculated with cells containing 20% of P3HB, achieved the highest qP3HB (0.17±0.018gP3HBL-1h-1); whereas a P3HB content of 70% was reflected as a low qP3HB (0.021±0.002gP3HBL-1h-1). On the other hand, using an inoculum with 70% of polymer content, the Mw of the biopolymer remained stable at values close to 3200kDa; whereas, when an inoculum with 20% of P3HB was used, the Mw decreased drastically during early stages of cultivation. These results show that manipulating the P3HB content of the inoculum is possible to produce biopolymers with a suitable Mw.


Assuntos
Azotobacter vinelandii/metabolismo , Reatores Biológicos/microbiologia , Meios de Cultura/química , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Polímeros/química , Meios de Cultura/metabolismo , Hidroxibutiratos/análise , Peso Molecular , Poliésteres/análise , Polímeros/metabolismo
20.
PLoS One ; 11(4): e0153266, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27055016

RESUMO

Azotobacter vinelandii is a soil bacterium that undergoes a differentiation process that forms cysts resistant to desiccation. During encystment, a family of alkylresorcinols lipids (ARs) are synthesized and become part of the membrane and are also components of the outer layer covering the cyst, where they play a structural role. The synthesis of ARs in A. vinelandii has been shown to occur by the activity of enzymes encoded in the arsABCD operon. The expression of this operon is activated by ArpR, a LysR-type transcriptional regulator whose transcription occurs during encystment and is dependent on the alternative sigma factor RpoS. In this study, we show that the two component response regulator GacA, the small RNA RsmZ1 and the translational repressor protein RsmA, implicated in the control of the synthesis of other cysts components (i.e., alginate and poly-ß-hydroxybutyrate), are also controlling alkylresorcinol synthesis. This control affects the expression of arsABCD and is exerted through the regulation of arpR expression. We show that RsmA negatively regulates arpR expression by binding its mRNA, repressing its translation. GacA in turn, positively regulates arpR expression through the activation of transcription of RsmZ1, that binds RsmA, counteracting its repressor activity. This regulatory cascade is independent of RpoS. We also show evidence suggesting that GacA exerts an additional regulation on arsABCD expression through an ArpR independent route.


Assuntos
Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosfolipídeos/metabolismo , Resorcinóis/química , Transdução de Sinais , Azotobacter vinelandii/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Ensaio de Desvio de Mobilidade Eletroforética , Resorcinóis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA