RESUMO
BACKGROUND: Hypoxic-ischemic brain injury/encephalopathy affects about 1.15 million neonates per year, 96% of whom are born in low- and middle-income countries. Therapeutic hypothermia is not effective in this setting, possibly because injury occurs significantly before birth. Here, we studied the pharmacokinetics, safety, and efficacy of perinatal azithromycin administration in near-term lambs following global ischemic injury to support earlier treatment approaches. METHODS: Ewes and their lambs of both sexes (n=34, 141-143 days) were randomly assigned to receive azithromycin or placebo before delivery as well as postnatally. Lambs were subjected to severe global hypoxia-ischemia utilizing an acute umbilical cord occlusion model. Outcomes were assessed over a 6-day period. RESULTS: While maternal azithromycin exhibited relatively low placental transfer, azithromycin-treated lambs recovered spontaneous circulation faster following the initiation of cardiopulmonary resuscitation and were extubated sooner. Additionally, peri- and postnatal azithromycin administration was well tolerated, demonstrating a 77-hour plasma elimination half-life, as well as significant accumulation in the brain and other tissues. Azithromycin administration resulted in a systemic immunomodulatory effect, demonstrated by reductions in proinflammatory IL-6 (interleukin-6) levels. Treated lambs exhibited a trend toward improved neurodevelopmental outcomes while histological analysis revealed that azithromycin supported white matter preservation and attenuated inflammation in the cingulate and parasagittal cortex. CONCLUSIONS: Perinatal azithromycin administration enhances neonatal resuscitation, attenuates neuroinflammation, and supports limited improvement of select histological outcomes in an ovine model of hypoxic-ischemic brain injury/encephalopathy.
Assuntos
Lesões Encefálicas , Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Masculino , Animais , Ovinos , Feminino , Gravidez , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Neuroproteção , Placenta , Ressuscitação/efeitos adversos , Hipotermia Induzida/métodos , Lesões Encefálicas/etiologiaRESUMO
The effect of subthalamic deep brain stimulation on gait coordination and freezing of gait in patients with Parkinson's disease is incompletely understood. The purpose of this study was to investigate the extent to which modulation of symmetry and coordination between legs by subthalamic deep brain stimulation alters the frequency and duration of freezing of gait in patients with Parkinson's disease. We recruited 13 post-subthalamic deep brain stimulation patients with Parkinson's disease with off freezing of gait and evaluated them in the following 4 conditions: subthalamic deep brain stimulation on (ON) and stimulation off (OFF), 50% reduction of stimulation voltage for the leg with shorter step length (worse side reduction) and for the leg with longer step length (better side reduction). Gait analysis was performed on a treadmill and recorded by an optoelectronic analysis system. We measured frequency and duration of freezing of gait episodes. Bilateral coordination of gait was assessed by the Phase Coordination Index, quantifying the ability to generate antiphase stepping. From the OFF to the ON state, freezing of gait improved in frequency (2.0 ± 0.4 to 1.4 ± 0.5 episodes) and duration (12.2 ± 2.6 to 2.6 ± 0.8 seconds; P = .005). Compared with the ON state, only better side reduction further reduced freezing of gait frequency (0.2 ± 0.2) and duration of episodes (0.2 ± 0.2 seconds; P = .03); worse side reduction did not change frequency (1.3 ± 0.4) but increased freezing of gait duration (5.2 ± 2.1 seconds). The better side reduction-associated improvements were accompanied by normalization of gait coordination, as measured by phase coordination index (16.5% ± 6.0%), which was significantly lower than in the other 3 conditions. Reduction of stimulation voltage in the side contralateral to the leg with longer step length improves frequency and duration of freezing of gait through normalization of gait symmetry and coordination in subthalamic deep brain stimulation patients with Parkinson's disease. This identifies poor leg coordination as a risk factor for causing freezing of gait.